70 resultados para Optimization. Markov Chain. Genetic Algorithm. Fuzzy Controller
Resumo:
Uncertainty contributes a major part in the accuracy of a decision-making process while its inconsistency is always difficult to be solved by existing decision-making tools. Entropy has been proved to be useful to evaluate the inconsistency of uncertainty among different respondents. The study demonstrates an entropy-based financial decision support system called e-FDSS. This integrated system provides decision support to evaluate attributes (funding options and multiple risks) available in projects. Fuzzy logic theory is included in the system to deal with the qualitative aspect of these options and risks. An adaptive genetic algorithm (AGA) is also employed to solve the decision algorithm in the system in order to provide optimal and consistent rates to these attributes. Seven simplified and parallel projects from a Hong Kong construction small and medium enterprise (SME) were assessed to evaluate the system. The result shows that the system calculates risk adjusted discount rates (RADR) of projects in an objective way. These rates discount project cash flow impartially. Inconsistency of uncertainty is also successfully evaluated by the use of the entropy method. Finally, the system identifies the favourable funding options that are managed by a scheme called SME Loan Guarantee Scheme (SGS). Based on these results, resource allocation could then be optimized and the best time to start a new project could also be identified throughout the overall project life cycle.
Resumo:
An extensive set of machine learning and pattern classification techniques trained and tested on KDD dataset failed in detecting most of the user-to-root attacks. This paper aims to provide an approach for mitigating negative aspects of the mentioned dataset, which led to low detection rates. Genetic algorithm is employed to implement rules for detecting various types of attacks. Rules are formed of the features of the dataset identified as the most important ones for each attack type. In this way we introduce high level of generality and thus achieve high detection rates, but also gain high reduction of the system training time. Thenceforth we re-check the decision of the user-to- root rules with the rules that detect other types of attacks. In this way we decrease the false-positive rate. The model was verified on KDD 99, demonstrating higher detection rates than those reported by the state- of-the-art while maintaining low false-positive rate.
Resumo:
In this paper we deal with performance analysis of Monte Carlo algorithm for large linear algebra problems. We consider applicability and efficiency of the Markov chain Monte Carlo for large problems, i.e., problems involving matrices with a number of non-zero elements ranging between one million and one billion. We are concentrating on analysis of the almost Optimal Monte Carlo (MAO) algorithm for evaluating bilinear forms of matrix powers since they form the so-called Krylov subspaces. Results are presented comparing the performance of the Robust and Non-robust Monte Carlo algorithms. The algorithms are tested on large dense matrices as well as on large unstructured sparse matrices.
Resumo:
In this work we study the computational complexity of a class of grid Monte Carlo algorithms for integral equations. The idea of the algorithms consists in an approximation of the integral equation by a system of algebraic equations. Then the Markov chain iterative Monte Carlo is used to solve the system. The assumption here is that the corresponding Neumann series for the iterative matrix does not necessarily converge or converges slowly. We use a special technique to accelerate the convergence. An estimate of the computational complexity of Monte Carlo algorithm using the considered approach is obtained. The estimate of the complexity is compared with the corresponding quantity for the complexity of the grid-free Monte Carlo algorithm. The conditions under which the class of grid Monte Carlo algorithms is more efficient are given.
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
We describe a Bayesian approach to analyzing multilocus genotype or haplotype data to assess departures from gametic (linkage) equilibrium. Our approach employs a Markov chain Monte Carlo (MCMC) algorithm to approximate the posterior probability distributions of disequilibrium parameters. The distributions are computed exactly in some simple settings. Among other advantages, posterior distributions can be presented visually, which allows the uncertainties in parameter estimates to be readily assessed. In addition, background knowledge can be incorporated, where available, to improve the precision of inferences. The method is illustrated by application to previously published datasets; implications for multilocus forensic match probabilities and for simple association-based gene mapping are also discussed.
Resumo:
The Stochastic Diffusion Search algorithm -an integral part of Stochastic Search Networks is investigated. Stochastic Diffusion Search is an alternative solution for invariant pattern recognition and focus of attention. It has been shown that the algorithm can be modelled as an ergodic, finite state Markov Chain under some non-restrictive assumptions. Sub-linear time complexity for some settings of parameters has been formulated and proved. Some properties of the algorithm are then characterised and numerical examples illustrating some features of the algorithm are presented.
Resumo:
Statistical methods of inference typically require the likelihood function to be computable in a reasonable amount of time. The class of “likelihood-free” methods termed Approximate Bayesian Computation (ABC) is able to eliminate this requirement, replacing the evaluation of the likelihood with simulation from it. Likelihood-free methods have gained in efficiency and popularity in the past few years, following their integration with Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) in order to better explore the parameter space. They have been applied primarily to estimating the parameters of a given model, but can also be used to compare models. Here we present novel likelihood-free approaches to model comparison, based upon the independent estimation of the evidence of each model under study. Key advantages of these approaches over previous techniques are that they allow the exploitation of MCMC or SMC algorithms for exploring the parameter space, and that they do not require a sampler able to mix between models. We validate the proposed methods using a simple exponential family problem before providing a realistic problem from human population genetics: the comparison of different demographic models based upon genetic data from the Y chromosome.
Resumo:
The steadily accumulating literature on technical efficiency in fisheries attests to the importance of efficiency as an indicator of fleet condition and as an object of management concern. In this paper, we extend previous work by presenting a Bayesian hierarchical approach that yields both efficiency estimates and, as a byproduct of the estimation algorithm, probabilistic rankings of the relative technical efficiencies of fishing boats. The estimation algorithm is based on recent advances in Markov Chain Monte Carlo (MCMC) methods— Gibbs sampling, in particular—which have not been widely used in fisheries economics. We apply the method to a sample of 10,865 boat trips in the US Pacific hake (or whiting) fishery during 1987–2003. We uncover systematic differences between efficiency rankings based on sample mean efficiency estimates and those that exploit the full posterior distributions of boat efficiencies to estimate the probability that a given boat has the highest true mean efficiency.
Resumo:
Evolutionary meta-algorithms for pulse shaping of broadband femtosecond duration laser pulses are proposed. The genetic algorithm searching the evolutionary landscape for desired pulse shapes consists of a population of waveforms (genes), each made from two concatenated vectors, specifying phases and magnitudes, respectively, over a range of frequencies. Frequency domain operators such as mutation, two-point crossover average crossover, polynomial phase mutation, creep and three-point smoothing as well as a time-domain crossover are combined to produce fitter offsprings at each iteration step. The algorithm applies roulette wheel selection; elitists and linear fitness scaling to the gene population. A differential evolution (DE) operator that provides a source of directed mutation and new wavelet operators are proposed. Using properly tuned parameters for DE, the meta-algorithm is used to solve a waveform matching problem. Tuning allows either a greedy directed search near the best known solution or a robust search across the entire parameter space.
Resumo:
Bayesian analysis is given of an instrumental variable model that allows for heteroscedasticity in both the structural equation and the instrument equation. Specifically, the approach for dealing with heteroscedastic errors in Geweke (1993) is extended to the Bayesian instrumental variable estimator outlined in Rossi et al. (2005). Heteroscedasticity is treated by modelling the variance for each error using a hierarchical prior that is Gamma distributed. The computation is carried out by using a Markov chain Monte Carlo sampling algorithm with an augmented draw for the heteroscedastic case. An example using real data illustrates the approach and shows that ignoring heteroscedasticity in the instrument equation when it exists may lead to biased estimates.
Resumo:
Monte Carlo algorithms often aim to draw from a distribution π by simulating a Markov chain with transition kernel P such that π is invariant under P. However, there are many situations for which it is impractical or impossible to draw from the transition kernel P. For instance, this is the case with massive datasets, where is it prohibitively expensive to calculate the likelihood and is also the case for intractable likelihood models arising from, for example, Gibbs random fields, such as those found in spatial statistics and network analysis. A natural approach in these cases is to replace P by an approximation Pˆ. Using theory from the stability of Markov chains we explore a variety of situations where it is possible to quantify how ’close’ the chain given by the transition kernel Pˆ is to the chain given by P . We apply these results to several examples from spatial statistics and network analysis.
Resumo:
Nonlinear adjustment toward long-run price equilibrium relationships in the sugar-ethanol-oil nexus in Brazil is examined. We develop generalized bivariate error correction models that allow for cointegration between sugar, ethanol, and oil prices, where dynamic adjustments are potentially nonlinear functions of the disequilibrium errors. A range of models are estimated using Bayesian Monte Carlo Markov Chain algorithms and compared using Bayesian model selection methods. The results suggest that the long-run drivers of Brazilian sugar prices are oil prices and that there are nonlinearities in the adjustment processes of sugar and ethanol prices to oil price but linear adjustment between ethanol and sugar prices.
Resumo:
This study sets out to find the best calving pattern for small-scale dairy systems in Michoacan State, central Mexico. Two models were built. First, a linear programming model was constructed to optimize calving pattern and herd structure according to metabolizable energy availability. Second, a Markov chain model was built to investigate three reproductive scenarios (good, average and poor) in order to suggest factors that maintain the calving pattern given by the linear programming model. Though it was not possible to maintain the optimal linear programming pattern, the Markov chain model suggested adopting different reproduction strategies according to period of the year that the cow is expected to calve. Comparing different scenarios, the Markov model indicated the effect of calving interval on calving pattern and herd structure.
Resumo:
The evolutionary history of gains and losses of vegetative reproductive propagules (soredia) in Porpidia s.l., a group of lichen-forming ascomycetes, was clarified using Bayesian Markov chain Monte Carlo (MCMC) approaches to monophyly tests and a combined MCMC and maximum likelihood approach to ancestral character state reconstructions. The MCMC framework provided confidence estimates for the reconstructions of relationships and ancestral character states, which formed the basis for tests of evolutionary hypotheses. Monophyly tests rejected all hypotheses that predicted any clustering of reproductive modes in extant taxa. In addition, a nearest-neighbor statistic could not reject the hypothesis that the vegetative reproductive mode is randomly distributed throughout the group. These results show that transitions between presence and absence of the vegetative reproductive mode within Porpidia s.l. occurred several times and independently of each other. Likelihood reconstructions of ancestral character states at selected nodes suggest that - contrary to previous thought - the ancestor to Porpidia s.l. already possessed the vegetative reproductive mode. Furthermore, transition rates are reconstructed asymmetrically with the vegetative reproductive mode being gained at a much lower rate than it is lost. A cautious note has to be added, because a simulation study showed that the ancestral character state reconstructions were highly dependent on taxon sampling. However, our central conclusions, particularly the higher rate of change from vegetative reproductive mode present to absent than vice versa within Porpidia s.l., were found to be broadly independent of taxon sampling. [Ancestral character state reconstructions; Ascomycota, Bayesian inference; hypothesis testing; likelihood; MCMC; Porpidia; reproductive systems]