89 resultados para Optical amplitudes
Resumo:
Pulsed lidars are commonly used to retrieve vertical distributions of cloud and aerosol layers. It is widely believed that lidar cloud retrievals (other than cloud base altitude) are limited to optically thin clouds. Here, we demonstrate that lidars can retrieve optical depths of thick clouds using solar background light as a signal, rather than (as now) merely a noise to be subtracted. Validations against other instruments show that retrieved cloud optical depths agree within 10%–15% for overcast stratus and broken clouds. In fact, for broken cloud situations, one can retrieve not only the aerosol properties in clear-sky periods using lidar signals, but also the optical depth of thick clouds in cloudy periods using solar background signals. This indicates that, in general, it may be possible to retrieve both aerosol and cloud properties using a single lidar. Thus, lidar observations have great untapped potential to study interactions between clouds and aerosols.
Resumo:
The optical and semiconductor properties of lead telluride coatings are dependant on various factors contributing to its performance. In this paper, we will present the temperature dependant effects of single layer lead telluride coatings on the dispersion and absorption characteristics, absorption edge, and carrier concentration from 15 K to 436 K using both experimental and theoretical analysis.
Resumo:
The Improved Stratospheric and Mesospheric Sounder (ISAMS) is designed to measure the Earths middle atmosphere in the range of 4.6 to 16.6 micorns. This paper considers all the coated optical elements in two radiometric test channels. (Analysis of the spectral response will be presented as a seperate paper at this symposium, see Sheppard et al). Comparisons between the compued spectral performance and measurements from actual coatings will be discussed: These will include substrate absorption simulations. The results of environmental testing (durability and stability) are included, together with details of coating deposition and monitoring conditions.
Resumo:
Optical thin films are coatings of amorphous, crystalline or polymerized materials, in single or multiple layers, on surfaces of optical components such as lenses and mirrors. These thin film coatings are used in optics to reduce reflections from optical parts (antireflection coatings) or to provide highly reflective surfaces (dielectric mirrors), as well as to protect components against abrasion and ambient moisture.
Resumo:
A method of designing multi-cavity infrared narrowband filters for bandwidth between 10% and 20% is presended: The method is based on a Tschebyshev prototype. The theoretical indices from these are simulated by Herpin equivalent layers, the outer layers may be also simulated by Herrmann's asymetrical tri-layer. The new algorithm of filter design can easily be implemented in any microcomputer.
Resumo:
Chebyshev optical-filter algorithms for low-cost microcomputers have been improved. An offset ripple is now used for better transmission/matching in low-pass stacks. A prototype for narrowband filters is now more general and nearer practicability.
Resumo:
A Kalman filter algorithm has been applied to interpret the optical reflectance excursions during vacuum deposition of infrared coatings and multilayer thin-film filters. The application has been described in detail elsewhere and this paper now reports on-line experience for estimating deposition rate and thickness. The estimation proved sufficiently reliable to firstly 'navigate' regular manufacture (as controlled by a skilled operator) and to subsequently reproduce the skill without interpretation or intervention whilst maintaining exemplary product quality. Optical control by means of this Kalman filter application is therefore considered suitable as a basis for the automated manufacture of infrared coatings and multilayer thin-film filters.
Resumo:
New algorithms and microcomputer-programs for generating original multilayer designs (and printing a spectral graph) from refractive-index input are presented. The programs are characterised TSHEBYSHEV, HERPIN, MULTILAYER-SPECTRUM and have originated new designs of narrow-stopband, non-polarizing edge, and Tshebyshev optical filter. Computation procedure is an exact synthesis (so far that is possible) numerical refinement not having been needed.
Resumo:
Use of orthogonal space-time block codes (STBCs) with multiple transmitters and receivers can improve signal quality. However, in optical intensity modulated signals, output of the transmitter is non-negative and hence standard orthogonal STBC schemes need to be modified. A generalised framework for applying orthogonal STBCs for free-space IM/DD optical links is presented.
Resumo:
A radiometric analysis of the light coupled by optical fiber amplitude modulating extrinsic-type reflectance displacement sensors is presented. Uncut fiber sensors show the largest range but a smaller responsivity. Single cut fiber sensors exhibit an improvement in responsivity at the expense of range. A further increase in responsivity as well as a reduction in the operational range is obtained when the double cut sensor configuration is implemented. The double cut configuration is particularly suitable in applications where feedback action is applied to the moving reflector surface. © 2000 American Institute of Physics.
Resumo:
The precision of quasioptical null-balanced bridge instruments for transmission and reflection coefficient measurements at millimeter and submillimeter wavelengths is analyzed. A Jones matrix analysis is used to describe the amount of power reaching the detector as a function of grid angle orientation, sample transmittance/reflectance and phase delay. An analysis is performed of the errors involved in determining the complex transmission and reflection coefficient after taking into account the quantization error in the grid angle and micrometer readings, the transmission or reflection coefficient of the sample, the noise equivalent power of the detector, the source power and the post-detection bandwidth. For a system fitted with a rotating grid with resolution of 0.017 rad and a micrometer quantization error of 1 μm, a 1 mW source, and a detector with a noise equivalent power 5×10−9 W Hz−1/2, the maximum errors at an amplitude transmission or reflection coefficient of 0.5 are below ±0.025.
Resumo:
A plastic optical fibre reflectance sensor that makes full use of the critical angle of the fibres is implemented to monitor dew formation on a Peltier-cooled reflector surface. The optical configuration permits isolation of optoelectronic components from the sensing head and better light coupling between the reflector and the detecting fibre, giving a better signal of the onset of dew formation on the reflector. Continuous monitoring of the rate of change in reflectance as well as the absolute reflectance signals, the use of a novel polymethyl-methacrylate-coated hydrophobic film reflector on the Peltier element and the application of feedback around the point of dew formation, further reduces the possibility of contamination of the sensor head. Under closed-loop operation, the sensor is capable of cycling around the point of dew formation at a frequency of 2.5 Hz.
Resumo:
A new automatic feedback potometer for physiological studies of water uptake by root systems is described. A dual-optical-fibre amplitude-modulating displacement transducer of improved sensitivity is employed to detect the changes in liquid level. The merits of optimal double-cut fibres, which make full use of the critical angle and improve coupling between the emitter and the receiver, have resulted in a sensor that is 64 times more responsive than the simple emitter - detector probe. Positioning the optical fibre transducer in a narrow capillary and using feedback to control the liquid level allows continuous measurement of volumes in the nanolitre range. The optical sensor used does not need re-calibration for the different salt solutions used in such studies.
Resumo:
The monitoring of water uptake in plants is becoming increasingly important. Optical sensors offer considerable advantages over conventional methods and several sensors have been developed including an optical potometer that monitors water uptake from individual roots, the detection of xylem cavitation using audio acoustic emissions with an interferometric force feedback microphone, and an optical fiber displacement transducer that detects changes in leaf thickness in relation to leaf-water potential.