44 resultados para Object-oriented methods (Computer science)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we consider hybrid (fast stochastic approximation and deterministic refinement) algorithms for Matrix Inversion (MI) and Solving Systems of Linear Equations (SLAE). Monte Carlo methods are used for the stochastic approximation, since it is known that they are very efficient in finding a quick rough approximation of the element or a row of the inverse matrix or finding a component of the solution vector. We show how the stochastic approximation of the MI can be combined with a deterministic refinement procedure to obtain MI with the required precision and further solve the SLAE using MI. We employ a splitting A = D – C of a given non-singular matrix A, where D is a diagonal dominant matrix and matrix C is a diagonal matrix. In our algorithm for solving SLAE and MI different choices of D can be considered in order to control the norm of matrix T = D –1C, of the resulting SLAE and to minimize the number of the Markov Chains required to reach given precision. Further we run the algorithms on a mini-Grid and investigate their efficiency depending on the granularity. Corresponding experimental results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we describe an exploratory assessment of the effect of aspect-oriented programming on software maintainability. An experiment was conducted in which 11 software professionals were asked to carry out maintenance tasks on one of two programs. The first program was written in Java and the second in AspectJ. Both programs implement a shopping system according to the same set of requirements. A number of statistical hypotheses were tested. The results did seem to suggest a slight advantage for the subjects using the object-oriented system since in general it took the subjects less time to answer the questions on this system. Also, both systems appeared to be equally difficult to modify. However, the results did not show a statistically significant influence of aspect-oriented programming at the 5% level. We are aware that the results of this single small study cannot be generalized. We conclude that more empirical research is necessary in this area to identify the benefits of aspect-oriented programming and we hope that this paper will encourage such research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Many evolutionary algorithm applications involve either fitness functions with high time complexity or large dimensionality (hence very many fitness evaluations will typically be needed) or both. In such circumstances, there is a dire need to tune various features of the algorithm well so that performance and time savings are optimized. However, these are precisely the circumstances in which prior tuning is very costly in time and resources. There is hence a need for methods which enable fast prior tuning in such cases. We describe a candidate technique for this purpose, in which we model a landscape as a finite state machine, inferred from preliminary sampling runs. In prior algorithm-tuning trials, we can replace the 'real' landscape with the model, enabling extremely fast tuning, saving far more time than was required to infer the model. Preliminary results indicate much promise, though much work needs to be done to establish various aspects of the conditions under which it can be most beneficially used. A main limitation of the method as described here is a restriction to mutation-only algorithms, but there are various ways to address this and other limitations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

As the learning paradigm shifts to a more personalised learning process, users need dynamic feedback from their knowledge path. Learning Management Systems (LMS) offer customised feedback dependent on questions and the answers given. However these LMSs are not designed to generate personalised feedback for an individual learner, tutor and instructional designer. This paper presents an approach for generating constructive feedback for all stakeholders during a personalised learning process. The dynamic personalised feedback model generates feedback based on the learning objectives for the Learning Object. Feedback can be generated at Learning Object level and the Information Object level for both the individual learner and the group. The group feedback is meant for the tutors and instructional designer to improve the learning process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we discuss current work concerning Appearance-based and CAD-based vision; two opposing vision strategies. CAD-based vision is geometry based, reliant on having complete object centred models. Appearance-based vision builds view dependent models from training images. Existing CAD-based vision systems that work with intensity images have all used one and zero dimensional features, for example lines, arcs, points and corners. We describe a system we have developed for combining these two strategies. Geometric models are extracted from a commercial CAD library of industry standard parts. Surface appearance characteristics are then learnt automatically by observing actual object instances. This information is combined with geometric information and is used in hypothesis evaluation. This augmented description improves the systems robustness to texture, specularities and other artifacts which are hard to model with geometry alone, whilst maintaining the advantages of a geometric description.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper proposes a solution to the problems associated with network latency within distributed virtual environments. It begins by discussing the advantages and disadvantages of synchronous and asynchronous distributed models, in the areas of user and object representation and user-to-user interaction. By introducing a hybrid solution, which utilises the concept of a causal surface, the advantages of both synchronous and asynchronous models are combined. Object distortion is a characteristic feature of the hybrid system, and this is proposed as a solution which facilitates dynamic real-time user collaboration. The final section covers implementation details, with reference to a prototype system available from the Internet.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new subcortical structure shape modeling framework using heat kernel smoothing constructed with the Laplace-Beltrami eigenfunctions. The cotan discretization is used to numerically obtain the eigenfunctions of the Laplace-Beltrami operator along the surface of subcortical structures of the brain. The eigenfunctions are then used to construct the heat kernel and used in smoothing out measurements noise along the surface. The proposed framework is applied in investigating the influence of age (38-79 years) and gender on amygdala and hippocampus shape. We detected a significant age effect on hippocampus in accordance with the previous studies. In addition, we also detected a significant gender effect on amygdala. Since we did not find any such differences in the traditional volumetric methods, our results demonstrate the benefit of the current framework over traditional volumetric methods.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paraconsistent logics are non-classical logics which allow non-trivial and consistent reasoning about inconsistent axioms. They have been pro- posed as a formal basis for handling inconsistent data, as commonly arise in human enterprises, and as methods for fuzzy reasoning, with applica- tions in Artificial Intelligence and the control of complex systems. Formalisations of paraconsistent logics usually require heroic mathe- matical efforts to provide a consistent axiomatisation of an inconsistent system. Here we use transreal arithmetic, which is known to be consis- tent, to arithmetise a paraconsistent logic. This is theoretically simple and should lead to efficient computer implementations. We introduce the metalogical principle of monotonicity which is a very simple way of making logics paraconsistent. Our logic has dialetheaic truth values which are both False and True. It allows contradictory propositions, allows variable contradictions, but blocks literal contradictions. Thus literal reasoning, in this logic, forms an on-the- y, syntactic partition of the propositions into internally consistent sets. We show how the set of all paraconsistent, possible worlds can be represented in a transreal space. During the development of our logic we discuss how other paraconsistent logics could be arithmetised in transreal arithmetic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nine chess programs competed in July 2015 in the ICGA's World Computer Chess Championship at the Computer Science department of Leiden University. This is the official report of the event.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Models for which the likelihood function can be evaluated only up to a parameter-dependent unknown normalizing constant, such as Markov random field models, are used widely in computer science, statistical physics, spatial statistics, and network analysis. However, Bayesian analysis of these models using standard Monte Carlo methods is not possible due to the intractability of their likelihood functions. Several methods that permit exact, or close to exact, simulation from the posterior distribution have recently been developed. However, estimating the evidence and Bayes’ factors for these models remains challenging in general. This paper describes new random weight importance sampling and sequential Monte Carlo methods for estimating BFs that use simulation to circumvent the evaluation of the intractable likelihood, and compares them to existing methods. In some cases we observe an advantage in the use of biased weight estimates. An initial investigation into the theoretical and empirical properties of this class of methods is presented. Some support for the use of biased estimates is presented, but we advocate caution in the use of such estimates.