37 resultados para OXYGEN SPECIES LEVELS


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The endocannabinoid system (ECS) was only 'discovered' in the 1990s. Since then, many new ligands have been identified, as well as many new intracellular targets--ranging from the PPARs, to mitochondria, to lipid rafts. It was thought that blocking the CB-1 receptor might reverse obesity and the metabolic syndrome. This was based on the idea that the ECS was dysfunctional in these conditions. This has met with limited success. The reason may be that the ECS is a homeostatic system, which integrates energy seeking and storage behaviour with resistance to oxidative stress. It could be viewed as having thrifty actions. Thriftiness is an innate property of life, which is programmed to a set point by both environment and genetics, resulting in an epigenotype perfectly adapted to its environment. This thrifty set point can be modulated by hormetic stimuli, such as exercise, cold and plant micronutrients. We have proposed that the physiological and protective insulin resistance that underlies thriftiness encapsulates something called 'redox thriftiness', whereby insulin resistance is determined by the ability to resist oxidative stress. Modern man has removed most hormetic stimuli and replaced them with a calorific sedentary lifestyle, leading to increased risk of metabolic inflexibility. We suggest that there is a tipping point where lipotoxicity in adipose and hepatic cells induces mild inflammation, which switches thrifty insulin resistance to inflammation-driven insulin resistance. To understand this, we propose that the metabolic syndrome could be seen from the viewpoint of the ECS, the mitochondrion and the FOXO group of transcription factors. FOXO has many thrifty actions, including increasing insulin resistance and appetite, suppressing oxidative stress and shifting the organism towards using fatty acids. In concert with factors such as PGC-1, they also modify mitochondrial function and biogenesis. Hence, the ECS and FOXO may interact at many points; one of which may be via intracellular redox signalling. As cannabinoids have been shown to modulate reactive oxygen species production, it is possible that they can upregulate anti-oxidant defences. This suggests they may have an 'endohormetic' signalling function. The tipping point into the metabolic syndrome may be the result of a chronic lack of hormetic stimuli (in particular, physical activity), and thus, stimulus for PGC-1, with a resultant reduction in mitochondrial function and a reduced lipid capacitance. This, in the context of a positive calorie environment, will result in increased visceral adipose tissue volume, abnormal ectopic fat content and systemic inflammation. This would worsen the inflammatory-driven pathological insulin resistance and inability to deal with lipids. The resultant oxidative stress may therefore drive a compensatory anti-oxidative response epitomised by the ECS and FOXO. Thus, although blocking the ECS (e.g. via rimonabant) may induce temporary weight loss, it may compromise long-term stress resistance. Clues about how to modulate the system more safely are emerging from observations that some polyphenols, such as resveratrol and possibly, some phytocannabinoids, can modulate mitochondrial function and might improve resistance to a modern lifestyle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The peroxisomal proliferating-activated receptors (PPARs) are lipid-sensing transcription factors that have a role in embryonic development, but are primarily known for modulating energy metabolism, lipid storage, and transport, as well as inflammation and wound healing. Currently, there is no consensus as to the overall combined function of PPARs and why they evolved. We hypothesize that the PPARs had to evolve to integrate lipid storage and burning with the ability to reduce oxidative stress, as energy storage is essential for survival and resistance to injury/infection, but the latter increases oxidative stress and may reduce median survival (functional longevity). In a sense, PPARs may be an evolutionary solution to something we call the 'hypoxia-lipid' conundrum, where the ability to store and burn fat is essential for survival, but is a 'double-edged sword', as fats are potentially highly toxic. Ways in which PPARs may reduce oxidative stress involve modulation of mitochondrial uncoupling protein (UCP) expression (thus reducing reactive oxygen species, ROS), optimising forkhead box class O factor (FOXO) activity (by improving whole body insulin sensitivity) and suppressing NFkB (at the transcriptional level). In light of this, we therefore postulate that inflammation-induced PPAR downregulation engenders many of the signs and symptoms of the metabolic syndrome, which shares many features with the acute phase response (APR) and is the opposite of the phenotype associated with calorie restriction and high FOXO activity. In genetically susceptible individuals (displaying the naturally mildly insulin resistant 'thrifty genotype'), suboptimal PPAR activity may follow an exaggerated but natural adipose tissue-related inflammatory signal induced by excessive calories and reduced physical activity, which normally couples energy storage with the ability to mount an immune response. This is further worsened when pancreatic decompensation occurs, resulting in gluco-oxidative stress and lipotoxicity, increased inflammatory insulin resistance and oxidative stress. Reactivating PPARs may restore a metabolic balance and help to adapt the phenotype to a modern lifestyle.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Evidence has accumulated in recent years that suggests that nitrate from the diet, particularly vegetables, is capable of producing bioactive NO in the vasculature, following bioconversion to nitrite by oral bacteria. The aim of the present review was to consider the current body of evidence for potential beneficial effects of dietary nitrate on blood pressure and endothelial function, with emphasis on evidence from acute and chronic human intervention studies. The studies to date suggest that dietary nitrate acutely lowers blood pressure in healthy humans. An inverse relationship was seen between dose of nitrate consumed and corresponding systolic blood pressure reduction, with doses of nitrate as low as 3 mmol of nitrate reducing systolic blood pressure by 3 mmHg. Moreover, the current studies provide some promising evidence on the beneficial effects of dietary nitrate on endothelial function. In vitro studies suggest a number of potential mechanisms by which dietary nitrate and its sequential reduction to NO may reduce blood pressure and improve endothelial function, such as: acting as a substrate for endothelial NO synthase; increasing vasodilation; inhibiting mitochondrial reactive oxygen species production and platelet aggregation. In conclusion, the evidence for beneficial effects of dietary nitrate on blood pressure and endothelial function is promising. Further long-term randomised controlled human intervention studies assessing the potential effects of dietary nitrate on blood pressure and endothelial function are needed, particularly in individuals with hypertension and at risk of CVD.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Nucleotide-based drug candidates such as antisense oligonucleotides, aptamers, immunoreceptor-activating nucleotides, or (anti)microRNAs hold great therapeutic promise for many human diseases. Phosphorothioate (PS) backbone modification of nucleotide-based drugs is common practice to protect these promising drug candidates from rapid degradation by plasma and intracellular nucleases. Effects of the changes in physicochemical properties associated with PS modification on platelets have not been elucidated so far. Here we report the unexpected binding of PS-modified oligonucleotides to platelets eliciting strong platelet activation, signaling, reactive oxygen species generation, adhesion, spreading, aggregation, and thrombus formation in vitro and in vivo. Mechanistically, the platelet-specific receptor glycoprotein VI (GPVI) mediates these platelet-activating effects. Notably, platelets from GPVI function-deficient patients do not exhibit binding of PS-modified oligonucleotides, and platelet activation is fully abolished. Our data demonstrate a novel, unexpected, PS backbone-dependent, platelet-activating effect of nucleotide-based drug candidates mediated by GPVI. This unforeseen effect should be considered in the ongoing development programs for the broad range of upcoming and promising DNA/RNA therapeutics.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background—Increased production of reactive oxygen species (ROS) throughout the vascular wall is a feature of cardiovascular disease states, but therapeutic strategies remain limited by our incomplete understanding of the role and contribution of specific vascular cell ROS to disease pathogenesis. To investigate the specific role of endothelial cell (EC) ROS in the development of structural vascular disease, we generated a mouse model of endothelium-specific Nox2 overexpression and tested the susceptibility to aortic dissection after angiotensin II (Ang II) infusion. Methods and Results—A specific increase in endothelial ROS production in Nox2 transgenic mice was sufficient to cause Ang II–mediated aortic dissection, which was never observed in wild-type mice. Nox2 transgenic aortas had increased endothelial ROS production, endothelial vascular cell adhesion molecule-1 expression, matrix metalloproteinase activity, and CD45+ inflammatory cell infiltration. Conditioned media from Nox2 transgenic ECs induced greater Erk1/2 phosphorylation in vascular smooth muscle cells compared with wild-type controls through secreted cyclophilin A (CypA). Nox2 transgenic ECs (but not vascular smooth muscle cells) and aortas had greater secretion of CypA both at baseline and in response to Ang II stimulation. Knockdown of CypA in ECs abolished the increase in vascular smooth muscle cell Erk1/2 phosphorylation conferred by EC conditioned media, and preincubation with CypA augmented Ang II–induced vascular smooth muscle cell ROS production. Conclusions—These findings demonstrate a pivotal role for EC-derived ROS in the determination of the susceptibility of the aortic wall to Ang II–mediated aortic dissection. ROS-dependent CypA secretion by ECs is an important signaling mechanism through which EC ROS regulate susceptibility of structural components of the aortic wall to aortic dissection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

"Stress-regulated" mitogen-activated protein kinases (SR-MAPKs) comprise the stress-activated protein kinases (SAPKs)/c-Jun N-terminal kinases (JNKs) and the p38-MAPKs. In the perfused heart, ischemia/reperfusion activates SR-MAPKs. Although the agent(s) directly responsible is unclear, reactive oxygen species are generated during ischemia/reperfusion. We have assessed the ability of oxidative stress (as exemplified by H2O2) to activate SR-MAPKs in the perfused heart and compared it with the effect of ischemia/reperfusion. H2O2 activated both SAPKs/JNKs and p38-MAPK. Maximal activation by H2O2 in both cases was observed at 0.5 mM. Whereas activation of p38-MAPK by H2O2 was comparable to that of ischemia and ischemia/reperfusion, activation of the SAPKs/JNKs was less than that of ischemia/reperfusion. As with ischemia/reperfusion, there was minimal activation of the ERK MAPK subfamily by H2O2. MAPK-activated protein kinase 2 (MAPKAPK2), a downstream substrate of p38-MAPKs, was activated by H2O2 to a similar extent as with ischemia or ischemia/reperfusion. In all instances, activation of MAPKAPK2 in perfused hearts was inhibited by SB203580, an inhibitor of p38-MAPKs. Perfusion of hearts at high aortic pressure (20 kilopascals) also activated the SR-MAPKs and MAPKAPK2. Free radical trapping agents (dimethyl sulfoxide and N-t-butyl-alpha-phenyl nitrone) inhibited the activation of SR-MAPKs and MAPKAPK2 by ischemia/reperfusion. These data are consistent with a role for reactive oxygen species in the activation of SR-MAPKs during ischemia/reperfusion.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The toxic effects of oxidative stress on cells (including cardiac myocytes, the contractile cells of the heart) are well known. However, an increasing body of evidence has suggested that increased production of reactive oxygen species (ROS) promotes cardiac myocyte growth. Thus, ROS may be 'second messenger' molecules in their own right, and growth-promoting neurohumoral agonists might exert their effects by stimulating production of ROS. The authors review the principal growth-promoting intracellular signaling pathways that are activated by ROS in cardiac myocytes, namely the mitogen-activated protein kinase cascades (extracellular signal-regulated kinases 1/2, c-Jun N-terminal kinases, and p38-mitogen-activated protein kinases) and the phosphoinositide 3-kinase/protein kinase B (Akt) pathway. Possible mechanisms are discussed by which these pathways are activated by ROS, including the oxidation of active site cysteinyl residues of protein and lipid phosphatases with their consequent inactivation, the potential involvement of protein kinase C or the apoptosis signal-regulating kinase 1, and the current models for the activation of the guanine nucleotide binding protein Ras.