114 resultados para Nutritional ecology
Resumo:
1. To understand population dynamics in stressed environments it is necessary to join together two classical lines of research. Population responses to environmental stress have been studied at low density in life table response experiments. These show how the population's growth rate (pgr) at low density varies in relation to levels of stress. Population responses to density, on the other hand, are based on examination of the relationship between pgr and population density. 2. The joint effects of stress and density on pgr can be pictured as a contour map in which pgr varies with stress and density in the same way that the height of land above sea level varies with latitude and longitude. Here a microcosm experiment is reported that compared the joint effects of zinc and population density on the pgr of the springtail Folsomia candida (Collembola). 3. Our experiments allowed the plotting of a complete map of the effects of density and a stressor on pgr. Particularly important was the position of the pgr= 0 contour, which suggested that carrying capacity varied little with zinc concentration until toxic levels were reached. 4. This prediction accords well with observations of population abundance in the field. The method also allowed us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence. 5. The mechanisms responsible for these phenomena are discussed. As zinc is an essential trace element the initial increase in pgr is probably a consequence of dietary zinc deficiency. The Allee effect may be attributed to productivity of the environment increasing with density at low density. Density dependence is a result of food limitation. 6. Synthesis and applications. We illustrate a novel solution based on mapping a population's growth rate in relation to stress and population density. Our method allows us to demonstrate, simultaneously, hormesis, toxicity, an Allee effect and density dependence in an important ecological indicator species. We hope that the approach followed here will prove to have general applicability enabling predictions of field abundance to be made from estimates of the joint effects of the stressors and density on population growth rate.
Resumo:
The influence of sedimentation, depth and substratum angle on sponge assemblages in the Wakatobi region, south-eastern Sulawesi, Indonesia was considered. Sponge assemblages were sampled from two reef localities. The first reef (Sampela) was highly impacted by high sedimentation rates with fine sediment particles that settle slowly, while the second (Hoga) experienced only fast settling coarse sediment with lower overall sedimentation rates. Sponge assemblages were sampled (area occupied and numbers) on the reef fiat (0 m) and at 5 (reef crest), 10 and 15 m (15 m at Hoga only). Some significant (P < 0.001) differences were observed in the area occupied and the number of sponge patches between surface angles and sites. Significantly lower (t > 4.61, df = 9, P < 0.001) sponge numbers, percentage cover and richness were associated with the reef flat at both sites compared with all other depths at each site, with the exception of abundance of sponges on the reef flat at Sampela, which was much greater than at any other depth sampled. Species richness increased with depth at both sites but differences between surface angles were only recorded at Sampela, with higher species richness being found on vertical, inclined and horizontal surfaces respectively A total of 100 sponge species (total area sampled 52.5 m(2)) was reported from the two sites, with 58 species found at Sampela and 71 species at Hoga (41% of species shared). Multi-dimensional scaling (MDS) indicated differences in assemblage structure between sites and most depth intervals, but not substratum angles. A number of biological (e.g. competition and predation) and physical (e.g. sedimentation and aerial exposure) factors were considered to control sponge abundance and richness. Unexpectedly a significant (F-1,F-169 = 148.98, P < 0.001) positive linear relationship was found between sponge density and area occupied. In areas of high sponge coverage, the number of patches was also high, possibly due to fragmentation of large sponges produced as a result of predation and physical disturbance. The MDS results were also the same whether sponge numbers or percentage cover estimates were used, suggesting that although these different approaches yield different sorts of information, the same assemblage structure can be identified.
Resumo:
The structure, size, stability, and functionality of lipid rafts are still in debate, but recent techniques allowing direct visualization have characterized them in a wide range of cell types. Lipid rafts are potentially modifiable by diet, particularly (but not exclusively) by dietary fatty acids. However, it is not clear whether dietary polyunsaturated fatty acids (PUFAs) are incorporated into raft lipids or whether their low affinity to cholesterol disallows this and causes phase separation from rafts and displacement of raft proteins. This review examines the potential for dietary modification of raft structure and function in the immune system, brain and retinal tissue, the gut, and in cancer cells. Although there is increasing evidence to suggest that membrane microdomains, and their modulation, have an impact in health and disease, it is too early to judge whether modulation of lipid rafts is responsible for the immunomodulatory effects of n-3 PUFA. In addition to dietary fatty acids, gangliosides and cholesterol may also modulate microdomains in a number of tissues, and recent work has highlighted sphingolipids in membrane microdomains as potential targets for inhibition of tumor growth by n-3 PUFA. The roles of fatty acids and gangliosides in cognitive development, age-related cognitive decline, psychiatric disorders, and Alzheimer's disease are poorly understood and require clarification, particularly with respect to the contribution of lipid rafts. The roles of lipid rafts in cancer, in microbial pathogenesis, and in insulin resistance are only just emerging, but compelling evidence indicates the growing importance of membrane microdomains in health and disease.
Resumo:
Purpose - The purpose of this paper is to investigate gym and non-gym users' use and understanding of nutrition labels. Design/methodology/approach - A consumer survey in the form of a questionnaire conducted in the Greater London area in February/March 2005. Subject recruitment process took place in both a gym and university setting. Frequency tables and chi(2)-test are used to assess relationships between variables (p = 0.05). Findings - The resulting sample consisted of 187 subjects, with predominance of females and gym users. Of the subjects, 88 per cent reported to at least occasionally read nutrition labels, with higher reading rates amongst women, irrespective of gym user status. Total and saturated fats are the most often information viewed on labels, however the overall knowledge of the calorie content of fat is low, with 53 per cent of subjects responding saturated fat contains more calories per gram when compared with other types of fats. This paper does not find significant differences in the use and understanding of nutrition labels between gym and non-gym users, but highlights the publics' continued lack of understanding of nutrition labels. Originality/value - This paper is unique as it investigates whether there is any difference between gym/non-gym users' use and interpretation of use of nutrition labels. It finds gender impacted more on nutritional labels knowledge than gym user's status. This points to a gender issue and questions the quality of information available to the general public. This paper is valuable as it highlights and identifies an area that requires further research and assessment, and is therefore useful to key stakeholders responsible for public health nutrition.
Resumo:
The human gut microbiota, comprising many hundreds of different microbial species, has closely co-evolved with its human host over the millennia. Diet has been a major driver of this co-evolution, in particular dietary non-digestible carbohydrates. This dietary fraction reaches the colon and becomes available for microbial fermentation, and it is in the colon that the great diversity of gut microorganisms resides. For the vast majority of our evolutionary history humans followed hunter-gatherer life-styles and consumed diets with many times more non-digestible carbohydrates, fiber and whole plant polyphenol rich foods than typical Western style diets today.
Resumo:
The application of probiotics and prebiotics to the manipulation of the microbial ecology of the human colon has recently seen many scientific advances. The sequencing of probiotic genomes is providing a wealth of new information on the biology of these microorganisms. In addition, we are learning more about the interactions of probiotics with human cells and with pathogenic bacteria. An alternative means of modulating the colonic microbial community is by the use of prebiotic oligosaccharides. Increasing knowledge of the metabolism of prebiotics by probiotics is allowing us to consider specifically targeting such dietary intervention tools at specific populatiori groups and specific disease states. (c) 2005 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.
Resumo:
The assessment of cellular effects by the aqueous phase of human feces (fecal water, FW) is a useful biomarker approach to study cancer risks and protective activities of food. In order to refine and develop the biomarker, different protocols of preparing FW were compared. Fecal waters were prepared by 3 methods: (A) direct centrifugation; (B) extraction of feces in PBS before centrifugation; and (C) centrifugation of lyophilized and reconstituted feces. Genotoxicity was determined in colon cells using the Comet assay. Selected samples were investigated for additional parameters related to carcinogenesis. Two of 7 FWs obtained by methods A and B were similarly genotoxic. Method B, however, yielded higher volumes of FW, allowing sterile filtration for long-term culture experiments. Four of 7 samples were non-genotoxic when prepared according to all 3 methods. FW from lyophilized feces and from fresh samples were equally genotoxic. FWs modulated cytotoxicity, paracellular permeability, and invasion, independent of their genotoxicity. All 3 methods of FW preparation can be used to assess genotoxicity. The higher volumes of FWobtained by preparation method B greatly enhance the perspectives of measuring different types of biological parameters and using these to disclose activities related to cancer development.