66 resultados para Numerical power performance


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kalpana Very High Resolution Radiometer (VHRR) water vapour (WV) channel is very similar to the WV channel of the Meteosat Visible and Infrared Radiation Imager (MVIRI) on Meteosat-7, and both satellites observe the Indian subcontinent. Thus it is possible to compare the performance of VHRR and MVIRI in numerical weather prediction (NWP) models. In order to do so, the impact of Kalpana- and Meteosat-7-measured WV radiances was evaluated using analyses and forecasts of moisture, temperature, geopotential and winds, using the European Centre for Medium-range Weather Forecasts (ECMWF) NWP model. Compared with experiments using Meteosat-7, the experiments using Kalpana WV radiances show a similar fit to all observations and produce very similar forecasts.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Knowledge is recognised as an important source of competitive advantage and hence there has been increasing academic and practitioner interest in understanding and isolating the factors that contribute to effective knowledge transfer between supply chain actors. The literature identifies power as a salient contributor to the effective operation of a supply chain partnership. However, there is a paucity of empirical research examining how power among actors influences knowledge acquisition and in turn the performance of supply chain partners. The aim of this research is to address this gap by examining the relationship between power, knowledge acquisition and supply chain performance among the supply chain partners of a focal Chinese steel manufacturer. A structured survey was used to collect the necessary data. Two conceptually independent variables – ‘availability of alternatives’ and ‘restraint in the use of power’ – were used to assess actual and realised power, respectively. Controlling for contingencies, we found that the flow of knowledge increased when supply chain actors had limited alternatives and when the more powerful actor exercised restraint in the use of power. Moreover, we found a positive relationship between knowledge acquisition and supply chain performance. This paper enriches the literature by empirically extending our understanding of how power affects knowledge acquisition and performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The heat pump market in the UK has grown rapidly over the last few years. Performance analyses of vertical ground-loop heat exchanger configurations have been widely carried out using both numerical modelling and experiments. However, research findings and design recommendations on horizontal slinky-loop and vertical slinky-loop heat exchangers are far fewer compared with those for vertical ground-loop heat exchanger configurations, especially where the long-term operation of the systems is concerned. The paper presents the results obtained from a numerical simulation for the horizontal slinky-loop and vertical slinky-loop heat exchangers of a ground-source heat pump system. A three-dimensional numerical heat transfer model was developed to study the thermal performance of various heat exchanger configurations. The influence of the loop pitch (loop spacing) and the depth of a vertical slinky-loop installation were investigated and the thermal performance and excavation work required for the horizontal and vertical slinky-loop heat exchangers were compared. The influence of the installation depth for vertical slinky-loop configurations was also investigated. The results of this study show that the influence of the installation depth of the vertical slinky-loop heat exchanger on the thermal performance of the system is small. The maximum difference in the thermal performance between the vertical and horizontal slinky-loop heat exchangers with the same loop diameter and loop pitch is less than 5%.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents results obtained from a numerical simulation for the horizontal slinky-loop heat exchanger of a ground-source heat pump system. A three-dimensional numerical model was developed and the results of the thermal performance of various heat exchanger configurations are presented. The investigation was carried out on five types of loop pitch (loop spacing), three types of loop diameter, three values of soil thermal properties, and allowing continuous and intermittent operation. Comparison was made for the heat transfer rate, the amount of pipe material needed, as well as excavation work required for the horizontal slinky-loop heat exchanger. The results indicate that system parameters have a significant effect on the thermal performance of the system

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Heating, ventilation, air conditioning and refrigeration (HVAC&R) systems account for more than 60% of the energy consumption of buildings in the UK. However, the effect of the variety of HVAC&R systems on building energy performance has not yet been taken into account within the existing building energy benchmarks. In addition, the existing building energy benchmarks are not able to assist decision-makers with HVAC&R system selection. This study attempts to overcome these two deficiencies through the performance characterisation of 36 HVAC&R systems based on the simultaneous dynamic simulation of a building and a variety of HVAC&R systems using TRNSYS software. To characterise the performance of HVAC&R systems, four criteria are considered; energy consumption, CO2 emissions, thermal comfort and indoor air quality. The results of the simulations show that, all the studied systems are able to provide an acceptable level of indoor air quality and thermal comfort. However, the energy consumption and amount of CO2 emissions vary. One of the significant outcomes of this study reveals that combined heating, cooling and power systems (CCHP) have the highest energy consumption with the lowest energy related CO2 emissions among the studied HVAC&R systems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work proposes a method to objectively determine the most suitable analogue redesign method for forward type converters under digital voltage mode control. Particular emphasis is placed on determining the method which allows the highest phase margin at the particular switching and crossover frequencies chosen by the designer. It is shown that at high crossover frequencies with respect to switching frequency, controllers designed using backward integration have the largest phase margin; whereas at low crossover frequencies with respect to switching frequency, controllers designed using bilinear integration have the largest phase margins. An accurate model of the power stage is used for simulation, and experimental results from a Buck converter are collected. The performance of the digital controllers is compared to that of the equivalent analogue controller both in simulation and experiment. Excellent correlation between the simulation and experimental results is presented. This work will allow designers to confidently choose the analogue redesign method which yields the greater phase margin for their application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Results are presented of a study of a performance of various track-side railway noise barriers, determined by using a two- dimensional numerical boundary element model. The basic model uses monopole sources and has been adapted to allow the sources to exhibit dipole-type radiation characteristics. A comparison of boundary element predictions of the performance of simple barriers and vehicle shapes is made with results obtained by using the standard U.K. prediction method. The results obtained from the numerical model indicate that modifying the source to exhibit dipole characteristics becomes more significant as the height of the barrier increases, and suggest that for any particular shape, absorbent barriers provide much better screening efficiency than the rigid equivalent. The cross-section of the rolling stock significantly affects the performance of rigid barriers. If the position of the upper edge is fixed, the results suggest that simple absorptive barriers provide more effective screening than tilted barriers. The addition of multiple edges to a barrier provides additional insertion loss without any increase in barrier height.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mobile-to-mobile (M-to-M) communications are expected to play a crucial role in future wireless systems and networks. In this paper, we consider M-to-M multiple-input multiple-output (MIMO) maximal ratio combining system and assess its performance in spatially correlated channels. The analysis assumes double-correlated Rayleigh-and-Lognormal fading channels and is performed in terms of average symbol error probability, outage probability, and ergodic capacity. To obtain the receive and transmit spatial correlation functions needed for the performance analysis, we used a three-dimensional (3D) M-to-M MIMO channel model, which takes into account the effects of fast fading and shadowing. The expressions for the considered metrics are derived as a function of the average signal-to-noise ratio per receive antenna in closed-form and are further approximated using the recursive adaptive Simpson quadrature method. Numerical results are provided to show the effects of system parameters, such as distance between antenna elements, maximum elevation angle of scatterers, orientation angle of antenna array in the x–y plane, angle between the x–y plane and the antenna array orientation, and degree of scattering in the x–y plane, on the system performance. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate half-duplex two-way dual-hop channel state information (CSI)-assisted amplify-and-forward (AF) relaying in the presence of in-phase and quadrature-phase (I/Q) imbalance. A compensation approach for the I/Q imbalance is proposed, which employs the received signals together with their conjugations to detect the desired signal. We also derive the average symbol error probability of the considered half-duplex two-way dual-hop CSI-assisted AF relaying networks with and without compensation for I/Q imbalance in Rayleigh fading channels. Numerical results are provided and show that the proposed compensation method mitigates the impact of I/Q imbalance to a certain extent.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose a compensation method for the joint effect of high-power amplifier (HPA) nonlinearity, in-phase/quadrature-phase (I/Q) imbalance and crosstalk in multiple-input multiple-output (MIMO) orthogonal space-time block coding (OSTBC) systems. The performance of the MIMO OSTBC equipped with the proposed compensation mechanism is evaluated in terms of average symbol error probability and system capacity, in Rayleigh fading channels. Numerical results are provided and show the effects on performance of several system parameters, namely, the HPA parameters, image-leakage ratio, crosstalk, numbers of antennas, and phase-shift keying modulation order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the joint effects of high-power amplifier (HPA) nonlinearity, in-phase/quadrature-phase (I/Q) imbalance and crosstalk, on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems, and propose a compensation method for the three impairments together. The performance of the MIMO TB system equipped with the proposed compensation scheme is evaluated in terms of average symbol error probability and capacity when transmissions are performed over uncorrelated Rayleigh fading channels. Numerical results are provided and show the effects on performance of several system parameters, namely, the HPA parameters, image-leakage ratio, crosstalk, numbers of antennas, length of pilot symbols and phase-shift keying modulation order.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the effects of high-power amplifier (HPA) nonlinearity and in-phase and quadrature-phase (I/Q) imbalance on the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems. Specifically, we propose a compensation method for HPA nonlinearity and I/Q imbalance together in MIMO TB systems. The performance of the MIMO TB system under study is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the HPA parameters, image-leakage ratio, numbers of transmit and receive antennas, length of pilot symbols, and modulation order of phase-shift keying (PSK), on performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, multiple-input multiple-output (MIMO) transmit beamforming (TB) systems under the consideration of nonlinear high-power amplifiers (HPAs) are investigated. The optimal beamforming scheme, with the optimal beamforming weight vector and combining vector, is proposed for MIMO systems with HPA nonlinearity. The performance of the proposed MIMO beamforming scheme in the presence of HPA nonlinearity is evaluated in terms of average symbol error probability (SEP), outage probability and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, namely, parameters of nonlinear HPA, numbers of transmit and receive antennas, and modulation order of phase-shift keying (PSK), on performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we investigate the performance of multiple-input multiple-output (MIMO) transmit beamforming (TB) systems in the presence of nonlinear high-power amplifiers (HPAs). Due to the suboptimality of maximal ratio transmission/maximal ratio combining (MRT/MRC) under HPA nonlinearity, quantized equal gain transmission (QEGT) is suggested as a feasible TB scheme. The effect of HPA nonlinearity on the performance of MIMO QEGT/MRC is evaluated in terms of the average symbol error probability (SEP) and system capacity, considering transmission over uncorrelated quasi-static frequency-flat Rayleigh fading channels. Numerical results are provided and show the effects of several system parameters, such as the parameters of nonlinear HPA, cardinality of the beamforming weight vector codebook, and modulation order of quadrature amplitude modulation (QAM), on performance.