206 resultados para Numerical Weather Prediction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A statistical model is derived relating the diurnal variation of sea surface temperature (SST) to the net surface heat flux and surface wind speed from a numerical weather prediction (NWP) model. The model is derived using fluxes and winds from the European Centre for Medium-Range Weather Forecasting (ECMWF) NWP model and SSTs from the Spinning Enhanced Visible and Infrared Imager (SEVIRI). In the model, diurnal warming has a linear dependence on the net surface heat flux integrated since (approximately) dawn and an inverse quadratic dependence on the maximum of the surface wind speed in the same period. The model coefficients are found by matching, for a given integrated heat flux, the frequency distributions of the maximum wind speed and the observed warming. Diurnal cooling, where it occurs, is modelled as proportional to the integrated heat flux divided by the heat capacity of the seasonal mixed layer. The model reproduces the statistics (mean, standard deviation, and 95-percentile) of the diurnal variation of SST seen by SEVIRI and reproduces the geographical pattern of mean warming seen by the Advanced Microwave Scanning Radiometer (AMSR-E). We use the functional dependencies in the statistical model to test the behaviour of two physical model of diurnal warming that display contrasting systematic errors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The incorporation of numerical weather predictions (NWP) into a flood forecasting system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and lead to a high number of false alarms. The availability of global ensemble numerical weather prediction systems through the THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for flood forecast. The Grid-Xinanjiang distributed hydrological model, which is based on the Xinanjiang model theory and the topographical information of each grid cell extracted from the Digital Elevation Model (DEM), is coupled with ensemble weather predictions based on the TIGGE database (CMC, CMA, ECWMF, UKMO, NCEP) for flood forecast. This paper presents a case study using the coupled flood forecasting model on the Xixian catchment (a drainage area of 8826 km2) located in Henan province, China. A probabilistic discharge is provided as the end product of flood forecast. Results show that the association of the Grid-Xinanjiang model and the TIGGE database gives a promising tool for an early warning of flood events several days ahead.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The CWRF is developed as a climate extension of the Weather Research and Forecasting model (WRF) by incorporating numerous improvements in the representation of physical processes and integration of external (top, surface, lateral) forcings that are crucial to climate scales, including interactions between land, atmosphere, and ocean; convection and microphysics; and cloud, aerosol, and radiation; and system consistency throughout all process modules. This extension inherits all WRF functionalities for numerical weather prediction while enhancing the capability for climate modeling. As such, CWRF can be applied seamlessly to weather forecast and climate prediction. The CWRF is built with a comprehensive ensemble of alternative parameterization schemes for each of the key physical processes, including surface (land, ocean), planetary boundary layer, cumulus (deep, shallow), microphysics, cloud, aerosol, and radiation, and their interactions. This facilitates the use of an optimized physics ensemble approach to improve weather or climate prediction along with a reliable uncertainty estimate. The CWRF also emphasizes the societal service capability to provide impactrelevant information by coupling with detailed models of terrestrial hydrology, coastal ocean, crop growth, air quality, and a recently expanded interactive water quality and ecosystem model. This study provides a general CWRF description and basic skill evaluation based on a continuous integration for the period 1979– 2009 as compared with that of WRF, using a 30-km grid spacing over a domain that includes the contiguous United States plus southern Canada and northern Mexico. In addition to advantages of greater application capability, CWRF improves performance in radiation and terrestrial hydrology over WRF and other regional models. Precipitation simulation, however, remains a challenge for all of the tested models.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Monte Carlo Independent Column Approximation (McICA) is a flexible method for representing subgrid-scale cloud inhomogeneity in radiative transfer schemes. It does, however, introduce conditional random errors but these have been shown to have little effect on climate simulations, where spatial and temporal scales of interest are large enough for effects of noise to be averaged out. This article considers the effect of McICA noise on a numerical weather prediction (NWP) model, where the time and spatial scales of interest are much closer to those at which the errors manifest themselves; this, as we show, means that noise is more significant. We suggest methods for efficiently reducing the magnitude of McICA noise and test these methods in a global NWP version of the UK Met Office Unified Model (MetUM). The resultant errors are put into context by comparison with errors due to the widely used assumption of maximum-random-overlap of plane-parallel homogeneous cloud. For a simple implementation of the McICA scheme, forecasts of near-surface temperature are found to be worse than those obtained using the plane-parallel, maximum-random-overlap representation of clouds. However, by applying the methods suggested in this article, we can reduce noise enough to give forecasts of near-surface temperature that are an improvement on the plane-parallel maximum-random-overlap forecasts. We conclude that the McICA scheme can be used to improve the representation of clouds in NWP models, with the provision that the associated noise is sufficiently small.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study has explored the prediction errors of tropical cyclones (TCs) in the European Centre for Medium-Range Weather Forecasts (ECMWF) Ensemble Prediction System (EPS) for the Northern Hemisphere summer period for five recent years. Results for the EPS are contrasted with those for the higher-resolution deterministic forecasts. Various metrics of location and intensity errors are considered and contrasted for verification based on IBTrACS and the numerical weather prediction (NWP) analysis (NWPa). Motivated by the aim of exploring extended TC life cycles, location and intensity measures are introduced based on lower-tropospheric vorticity, which is contrasted with traditional verification metrics. Results show that location errors are almost identical when verified against IBTrACS or the NWPa. However, intensity in the form of the mean sea level pressure (MSLP) minima and 10-m wind speed maxima is significantly underpredicted relative to IBTrACS. Using the NWPa for verification results in much better consistency between the different intensity error metrics and indicates that the lower-tropospheric vorticity provides a good indication of vortex strength, with error results showing similar relationships to those based on MSLP and 10-m wind speeds for the different forecast types. The interannual variation in forecast errors are discussed in relation to changes in the forecast and NWPa system and variations in forecast errors between different ocean basins are discussed in terms of the propagation characteristics of the TCs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Simulations of the top-of-atmosphere radiative-energy budget from the Met Office global numerical weather-prediction model are evaluated using new data from the Geostationary Earth Radiation Budget (GERB) instrument on board the Meteosat-8 satellite. Systematic discrepancies between the model simulations and GERB measurements greater than 20 Wm-2 in outgoing long-wave radiation (OLR) and greater than 60 Wm-2 in reflected short-wave radiation (RSR) are identified over the period April-September 2006 using 12 UTC data. Convective cloud over equatorial Africa is spatially less organized and less reflective than in the GERB data. This bias depends strongly on convective-cloud cover, which is highly sensitive to changes in the model convective parametrization. Underestimates in model OLR over the Gulf of Guinea coincide with unrealistic southerly cloud outflow from convective centres to the north. Large overestimates in model RSR over the subtropical ocean, greater than 50 Wm-2 at 12 UTC, are explained by unrealistic radiative properties of low-level cloud relating to overestimation of cloud liquid water compared with independent satellite measurements. The results of this analysis contribute to the development and improvement of parametrizations in the global forecast model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

There is a pressing need for good rainfall data for the African continent both for humanitarian and climatological purposes. Given the sparseness of ground-based observations, one source of rainfall information is Numerical Weather Prediction (NWP) model outputs. The aim of this article is to investigate the quality of two NWP products using Ethiopia as a test case. The two products evaluated are the ERA-40 and NCEP reanalysis rainfall products. Spatial, seasonal and interannual variability of rainfall have been evaluated for Kiremt (JJAS) and Belg (FMAM) seasons at a spatial scale that reflects the local variability of the rainfall climate using a method which makes optimum use of sparse gauge validation data. We found that the spatial pattern of the rainfall climatology is captured well by both models especially for the main rainy season Kiremt. However, both models tend to overestimate the mean rainfall in the northwest, west and central regions but underestimate in the south and east. The overestimation is greater for NCEP in Belg season and greater for ERA-40 in Kiremt Season. ERA-40 captures the annual cycle over most of the country better than NCEP, but strongly exaggerates the Kiremt peak in the northwest and west. The overestimation in Kiremt appears to have been reduced since the assimilation of satellite data increased around 1990. For both models the interannual variability is less well captured than the spatial and seasonal variability. Copyright © 2008 Royal Meteorological Society

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global radiation balance of the atmosphere is still poorly observed, particularly at the surface. We investigate the observed radiation balance at (1) the surface using the ARM Mobile Facility in Niamey, Niger, and (2) the top of the atmosphere (TOA) over West Africa using data from the Geostationary Earth Radiation Budget (GERB) instrument on board Meteosat-8. Observed radiative fluxes are compared with predictions from the global numerical weather prediction (NWP) version of the Met Office Unified Model (MetUM). The evaluation points to major shortcomings in the NWP model's radiative fluxes during the dry season (December 2005 to April 2006) arising from (1) a lack of absorbing aerosol in the model (mineral dust and biomass burning aerosol) and (2) a poor specification of the surface albedo. A case study of the major Saharan dust outbreak of 6–12 March 2006 is used to evaluate a parameterization of mineral dust for use in the NWP models. The model shows good predictability of the large-scale flow out to 4–5 days with the dust parameterization providing reasonable dust uplift, spatial distribution, and temporal evolution for this strongly forced dust event. The direct radiative impact of the dust reduces net downward shortwave (SW) flux at the surface (TOA) by a maximum of 200 W m−2 (150 W m−2), with a SW heating of the atmospheric column. The impacts of dust on terrestrial radiation are smaller. Comparisons of TOA (surface) radiation balance with GERB (ARM) show the “dusty” forecasts reduce biases in the radiative fluxes and improve surface temperatures and vertical thermodynamic structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An operational dust forecasting model is developed by including the Met Office Hadley Centre climate model dust parameterization scheme, within a Met Office regional numerical weather prediction (NWP) model. The model includes parameterizations for dust uplift, dust transport, and dust deposition in six discrete size bins and provides diagnostics such as the aerosol optical depth. The results are compared against surface and satellite remote sensing measurements and against in situ measurements from the Facility for Atmospheric Airborne Measurements for a case study when a strong dust event was forecast. Comparisons are also performed against satellite and surface instrumentation for the entire month of August. The case study shows that this Saharan dust NWP model can provide very good guidance of dust events, as much as 42 h ahead. The analysis of monthly data suggests that the mean and variability in the dust model is also well represented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Data assimilation provides techniques for combining observations and prior model forecasts to create initial conditions for numerical weather prediction (NWP). The relative weighting assigned to each observation in the analysis is determined by its associated error. Remote sensing data usually has correlated errors, but the correlations are typically ignored in NWP. Here, we describe three approaches to the treatment of observation error correlations. For an idealized data set, the information content under each simplified assumption is compared with that under correct correlation specification. Treating the errors as uncorrelated results in a significant loss of information. However, retention of an approximated correlation gives clear benefits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of recent papers in the atmospheric science literature have suggested that a dynamical link exists between the stratosphere and troposphere. Numerical modelling studies have shown that the troposphere has a time-mean response to changes to the stratospheric climatological state. In this study the response of the troposphere to an imposed transient stratospheric change is examined. The study uses a high horizontal and vertical resolution numerical weather-prediction model. Experiments compare the tropospheric forecasts of two medium-range forecast ensembles which have identical tropospheric initial conditions and different stratospheric initial conditions. In three case studies described here, stratospheric initial conditions have a statistically significant impact on the tropospheric flow. The mechanism for this change involves, in its most basic step, a change to tropospheric synoptic-scale systems. A consistent change to the tropospheric synoptic-scale systems occurs in response to the stratospheric initial conditions. The aggregated impact of changes to individual synoptic systems maps strongly onto the structure of the Arctic Oscillation, particularly over the North Atlantic storm track. The relationship between the stratosphere and troposphere, while apparent in Arctic Oscillation diagnostics, does not occur on coherent, hemispheric scales.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Insect returns from the UK's Doppler weather radars were collected in the summers of 2007 and 2008, to ascertain their usefulness in providing information about boundary layer winds. Such observations could be assimilated into numerical weather prediction models to improve forecasts of convective showers before precipitation begins. Significant numbers of insect returns were observed during daylight hours on a number of days through this period, when they were detected at up to 30 km range from the radars, and up to 2 km above sea level. The range of detectable insect returns was found to vary with time of year and temperature. There was also a very weak correlation with wind speed and direction. Use of a dual-polarized radar revealed that the insects did not orient themselves at random, but showed distinct evidence of common orientation on several days, sometimes at an angle to their direction of travel. Observation minus model background residuals of wind profiles showed greater bias and standard deviation than that of other wind measurement types, which may be due to the insects' headings/airspeeds and to imperfect data extraction. The method used here, similar to the Met Office's procedure for extracting precipitation returns, requires further development as clutter contamination remained one of the largest error contributors. Wind observations derived from the insect returns would then be useful for data assimilation applications.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the question of how many facets are needed to represent the energy balance of an urban area by developing simplified 3-, 2- and 1-facet versions of a 4-facet energy balance model of two-dimensional streets and buildings. The 3-facet model simplifies the 4-facet model by averaging over the canyon orientation, which results in similar net shortwave and longwave balances for both wall facets, but maintains the asymmetry in the heat fluxes within the street canyon. For the 2-facet model, on the assumption that the wall and road temperatures are equal, the road and wall facets can be combined mathematically into a single street-canyon facet with effective values of the heat transfer coefficient, albedo, emissivity and thermodynamic properties, without further approximation. The 1-facet model requires the additional assumption that the roof temperature is also equal to the road and wall temperatures. Idealised simulations show that the geometry and material properties of the walls and road lead to a large heat capacity of the combined street canyon, whereas the roof behaves like a flat surface with low heat capacity. This means that the magnitude of the diurnal temperature variation of the street-canyon facets are broadly similar and much smaller than the diurnal temperature variation of the roof facets. Consequently, the approximation that the street-canyon facets have similar temperatures is sound, and the road and walls can be combined into a single facet. The roof behaves very differently and a separate roof facet is required. Consequently, the 2-facet model performs similarly to the 4-facet model, while the 1-facet model does not. The models are compared with previously published observations collected in Mexico City. Although the 3- and 2-facet models perform better than the 1-facet model, the present models are unable to represent the phase of the sensible heat flux. This result is consistent with previous model comparisons, and we argue that this feature of the data cannot be produced by a single column model. We conclude that a 2-facet model is necessary, and for numerical weather prediction sufficient, to model an urban surface, and that this conclusion is robust and therefore applicable to more general geometries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Measurements of the top‐of‐the‐atmosphere outgoing longwave radiation (OLR) for July 2003 from Meteosat‐7 are used to assess the performance of the numerical weather prediction version of the Met Office Unified Model. A significant difference is found over desert regions of northern Africa where the model emits too much OLR by up to 35 Wm−2 in the monthly mean. By cloud‐screening the data we find an error of up to 50 Wm−2 associated with cloud‐free areas, which suggests an error in the model surface temperature, surface emissivity, or atmospheric transmission. By building up a physical model of the radiative properties of mineral dust based on in situ, and surface‐based and satellite remote sensing observations we show that the most plausible explanation for the discrepancy in OLR is due to the neglect of mineral dust in the model. The calculations suggest that mineral dust can exert a longwave radiative forcing by as much as 50 Wm−2 in the monthly mean for 1200 UTC in cloud‐free regions, which accounts for the discrepancy between the model and the Meteosat‐7 observations. This suggests that inclusion of the radiative effects of mineral dust will lead to a significant improvement in the radiation balance of numerical weather prediction models with subsequent improvements in performance.