137 resultados para Nonlinear Filtering
Resumo:
Photoselective plastic films with low transmission to far-red (FR) light (700-800 nm) are now available so that plants grown in greenhouses clad with such plastics exhibit reduced stem extension and, consequently, plant height. Here we compare the action of three FR-absorbing polythene films on extension growth of Petunia (Petunia X hybrida) cv. 'Express Blue' and Impatiens walleriana cv. 'Accent Deep Pink' with plants grown under a control polythene film (standard UVI/EVA film). Half of the plants under the control film were treated with a chemical plant growth regulator (PGR; diaminozide, B-Nine) and half were sprayed with water alone. Possible negative effects of such film plastics on flowering, and on fresh and dry weight accumulation, were also quantified. Plants were harvested destructively when all plants in each treatment had reached the first open flower stage. In Petunia, plant height was reduced by all three FR-filtering films and by PGR-treatment. The FR-filtering films giving the highest R:FR ratios also reduced plant height in Impatiens. Leaf number, leaf area and total dry Weight in both species. were greatest in the controls and smallest under films with the lowest PAR transmission. The film giving the highest R:FR ratio and PAR transmission also produced the most compact Petunia plants;, while the film. with. the lowest PAR transmission produced the least compact plants in both species. There was no significant effect of treatments on time to first flower in Impatiens. However, Petunia plants under low PAR transmission films took longer to flower. Plastic-films which filter out FR light to increase the R:FR ratio, combined With high PAR transmission, can therefore be used as an alternative to conventional PGRs.
Resumo:
The 3D reconstruction of a Golgi-stained dendritic tree from a serial stack of images captured with a transmitted light bright-field microscope is investigated. Modifications to the bootstrap filter are discussed such that the tree structure may be estimated recursively as a series of connected segments. The tracking performance of the bootstrap particle filter is compared against Differential Evolution, an evolutionary global optimisation method, both in terms of robustness and accuracy. It is found that the particle filtering approach is significantly more robust and accurate for the data considered.
Resumo:
A tunable radial basis function (RBF) network model is proposed for nonlinear system identification using particle swarm optimisation (PSO). At each stage of orthogonal forward regression (OFR) model construction, PSO optimises one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is computationally more efficient.
Resumo:
This paper introduces a procedure for filtering electromyographic (EMG) signals. Its key element is the Empirical Mode Decomposition, a novel digital signal processing technique that can decompose my time-series into a set of functions designated as intrinsic mode functions. The procedure for EMG signal filtering is compared to a related approach based on the wavelet transform. Results obtained from the analysis of synthetic and experimental EMG signals show that Our method can be Successfully and easily applied in practice to attenuation of background activity in EMG signals. (c) 2006 Elsevier Ltd. All rights reserved.
Resumo:
This paper illustrates how nonlinear programming and simulation tools, which are available in packages such as MATLAB and SIMULINK, can easily be used to solve optimal control problems with state- and/or input-dependent inequality constraints. The method presented is illustrated with a model of a single-link manipulator. The method is suitable to be taught to advanced undergraduate and Master's level students in control engineering.
Resumo:
Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.
Nonlinear system identification using particle swarm optimisation tuned radial basis function models
Resumo:
A novel particle swarm optimisation (PSO) tuned radial basis function (RBF) network model is proposed for identification of non-linear systems. At each stage of orthogonal forward regression (OFR) model construction process, PSO is adopted to tune one RBF unit's centre vector and diagonal covariance matrix by minimising the leave-one-out (LOO) mean square error (MSE). This PSO aided OFR automatically determines how many tunable RBF nodes are sufficient for modelling. Compared with the-state-of-the-art local regularisation assisted orthogonal least squares algorithm based on the LOO MSE criterion for constructing fixed-node RBF network models, the PSO tuned RBF model construction produces more parsimonious RBF models with better generalisation performance and is often more efficient in model construction. The effectiveness of the proposed PSO aided OFR algorithm for constructing tunable node RBF models is demonstrated using three real data sets.