83 resultados para Non-linear dose-response curve
Resumo:
The migration of liquids in porous media, such as sand, has been commonly considered at high saturation levels with liquid pathways at pore dimensions. In this letter we reveal a low saturation regime observed in our experiments with droplets of extremely low volatility liquids deposited on sand. In this regime the liquid is mostly found within the grain surface roughness and in the capillary bridges formed at the contacts between the grains. The bridges act as variable-volume reservoirs and the flow is driven by the capillary pressure arising at the wetting front according to the roughness length scales. We propose that this migration (spreading) is the result of interplay between the bridge volume adjustment to this pressure distribution and viscous losses of a creeping flow within the roughness. The net macroscopic result is a special case of non-linear diffusion described by a superfast diffusion equation (SFDE) for saturation with distinctive mathematical character. We obtain solutions to a moving boundary problem defined by SFDE that robustly convey a time power law of spreading as seen in our experiments.
Resumo:
Criteria are proposed for evaluating sea surface temperature (SST) retrieved from satellite infra-red imagery: bias should be small on regional scales; sensitivity to atmospheric humidity should be small; and sensitivity of retrieved SST to surface temperature should be close to 1 K K−1. Their application is illustrated for non-linear sea surface temperature (NLSST) estimates. 233929 observations from the Advanced Very High Resolution Radiometer (AVHRR) on Metop-A are matched with in situ data and numerical weather prediction (NWP) fields. NLSST coefficients derived from these matches have regional biases from −0.5 to +0.3 K. Using radiative transfer modelling we find that a 10% increase in humidity alone can change the retrieved NLSST by between −0.5 K and +0.1 K. A 1 K increase in SST changes NLSST by <0.5 K in extreme cases. The validity of estimates of sensitivity by radiative transfer modelling is confirmed empirically.
Resumo:
We compare a number of models of post War US output growth in terms of the degree and pattern of non-linearity they impart to the conditional mean, where we condition on either the previous period's growth rate, or the previous two periods' growth rates. The conditional means are estimated non-parametrically using a nearest-neighbour technique on data simulated from the models. In this way, we condense the complex, dynamic, responses that may be present in to graphical displays of the implied conditional mean.
Resumo:
In this paper we discuss the current state-of-the-art in estimating, evaluating, and selecting among non-linear forecasting models for economic and financial time series. We review theoretical and empirical issues, including predictive density, interval and point evaluation and model selection, loss functions, data-mining, and aggregation. In addition, we argue that although the evidence in favor of constructing forecasts using non-linear models is rather sparse, there is reason to be optimistic. However, much remains to be done. Finally, we outline a variety of topics for future research, and discuss a number of areas which have received considerable attention in the recent literature, but where many questions remain.
Resumo:
We consider the impact of data revisions on the forecast performance of a SETAR regime-switching model of U.S. output growth. The impact of data uncertainty in real-time forecasting will affect a model's forecast performance via the effect on the model parameter estimates as well as via the forecast being conditioned on data measured with error. We find that benchmark revisions do affect the performance of the non-linear model of the growth rate, and that the performance relative to a linear comparator deteriorates in real-time compared to a pseudo out-of-sample forecasting exercise.
Resumo:
This paper models the transmission of shocks between the US, Japanese and Australian equity markets. Tests for the existence of linear and non-linear transmission of volatility across the markets are performed using parametric and non-parametric techniques. In particular the size and sign of return innovations are important factors in determining the degree of spillovers in volatility. It is found that a multivariate asymmetric GARCH formulation can explain almost all of the non-linear causality between markets. These results have important implications for the construction of models and forecasts of international equity returns.
Resumo:
This paper forecasts Daily Sterling exchange rate returns using various naive, linear and non-linear univariate time-series models. The accuracy of the forecasts is evaluated using mean squared error and sign prediction criteria. These show only a very modest improvement over forecasts generated by a random walk model. The Pesaran–Timmerman test and a comparison with forecasts generated artificially shows that even the best models have no evidence of market timing ability.
Resumo:
We discuss the modelling of dielectric responses of amorphous biological samples. Such samples are commonly encountered in impedance spectroscopy studies as well as in UV, IR, optical and THz transient spectroscopy experiments and in pump-probe studies. In many occasions, the samples may display quenched absorption bands. A systems identification framework may be developed to provide parsimonious representations of such responses. To achieve this, it is appropriate to augment the standard models found in the identification literature to incorporate fractional order dynamics. Extensions of models using the forward shift operator, state space models as well as their non-linear Hammerstein-Wiener counterpart models are highlighted. We also discuss the need to extend the theory of electromagnetically excited networks which can account for fractional order behaviour in the non-linear regime by incorporating nonlinear elements to account for the observed non-linearities. The proposed approach leads to the development of a range of new chemometrics tools for biomedical data analysis and classification.
Resumo:
As a prelude to leaf-specific weed control using droplets targeted by a robotic weeder, amounts of herbicide required to control individual weed seedlings were estimated. Roundup Biactive was applied at doses equivalent to 1/128th to four times the recommended rate in addition to undiluted Roundup and water controls. Based on the mean ground cover of the seedlings, the recommended dose (1.5 l ha 1) was estimated and droplets were applied to individual plants by micropipette. All treatments contained 1% AS 500 SL, Agromix (adjuvant). Three weeks after application dry weights (DW) of each seedling was recorded. DW reductions of 50% were achieved in the five species tested at less than the recommended rate whereas only in one species was a 90% reduction obtained at that rate. In Galium aparine for example, 19.3 μg of glyphosate reduced DW per plant by 90% compared to the recommended dose of 8.4 μg.
Resumo:
This paper proposes a novel adaptive multiple modelling algorithm for non-linear and non-stationary systems. This simple modelling paradigm comprises K candidate sub-models which are all linear. With data available in an online fashion, the performance of all candidate sub-models are monitored based on the most recent data window, and M best sub-models are selected from the K candidates. The weight coefficients of the selected sub-model are adapted via the recursive least square (RLS) algorithm, while the coefficients of the remaining sub-models are unchanged. These M model predictions are then optimally combined to produce the multi-model output. We propose to minimise the mean square error based on a recent data window, and apply the sum to one constraint to the combination parameters, leading to a closed-form solution, so that maximal computational efficiency can be achieved. In addition, at each time step, the model prediction is chosen from either the resultant multiple model or the best sub-model, whichever is the best. Simulation results are given in comparison with some typical alternatives, including the linear RLS algorithm and a number of online non-linear approaches, in terms of modelling performance and time consumption.
Resumo:
The objective was to determine the concentration of total selenium (Se) and the proportion of total Se comprised as selenomethionine (SeMet) and selenocysteine (SeCys), as well as meat quality in terms of oxidative stability in post mortem tissues of lambs offered diets with an increasing dose rate of selenized enriched yeast (SY), or sodium selenite (SS). Fifty lambs were offered, for a period of 112 d, a total mixed ration which had either been supplemented with SY (0, 0.11, 0.21 or 0.31 mg/kg DM to give total Se contents of 0.19, 0.3, 0.4 and 0.5 mg Se/kg DM for treatments T1, T2, T3 and T4, respectively) or SS (0.11 mg/kg DM to give 0.3 mg Se/kg DM total Se [T5]). At enrolment and at 28, 56, 84 and 112 d following enrolment, blood samples were taken for Se and Se species determination, as well as glutathione peroxidase (GSH-Px) activity. At the end of the study lambs were euthanased and samples of heart, liver, kidney, and skeletal muscle were retained for Se and Se species determination. Tissue GSH-Px activity and thiobarbituric acid reactive substances (TBARS) were determined in Longissimus Thoracis. The incorporation into the diet of ascending concentrations of Se as SY increased whole blood total Se and the proportion of total Se comprised as SeMet, and erythrocyte GSH-Px activity. Comparable doses of SS supplementation did not result in significant differences between these parameters. With the exception of kidney tissue, all other tissues showed a dose dependant response to increasing concentrations of dietary SY, such that total Se and SeMet increased. Selenium content of Psoas Major was higher in animals fed SY when compared to a similar dose of SS, indicating improvements in Se availability and retention. There were no significant treatment effects on meat quality assessments GHS-Px and TBARS, reflecting the lack of difference in the proportion of total Se that was comprised as SeCys. However, oxidative stability improved marginally with ascending tissue Se content, providing an indication of a linear dose response whereby TBARS improved with ascending SY inclusion.
Statistical evaluation of the fixed concentration procedure for acute inhalation toxicity assessment
Resumo:
The conventional method for the assessment of acute inhalation toxicity (OECD Test Guideline 403, 1981) uses death of animals as an endpoint to identify the median lethal concentration (LC50). A new OECD Testing Guideline called the Fixed Concentration Procedure (FCP) is being prepared to provide an alternative to Test Guideline 403. Unlike Test Guideline 403, the FCP does not provide a point estimate of the LC50, but aims to identify an airborne exposure level that causes clear signs of nonlethal toxicity. This is then used to assign classification according to the new Globally Harmonized System of Classification and Labelling scheme (GHS). The FCP has been validated using statistical simulation rather than byin vivo testing. The statistical simulation approach predicts the GHS classification outcome and the numbers of deaths and animals used in the test for imaginary substances with a range of LC50 values and dose response curve slopes. This paper describes the FCP and reports the results from the statistical simulation study assessing its properties. It is shown that the procedure will be completed with considerably less death and suffering than Test Guideline 403, and will classify substances either in the same or a more stringent GHS class than that assigned on the basis of the LC50 value.
Resumo:
Combinations of drugs are increasingly being used for a wide variety of diseases and conditions. A pre-clinical study may allow the investigation of the response at a large number of dose combinations. In determining the response to a drug combination, interest may lie in seeking evidence of synergism, in which the joint action is greater than the actions of the individual drugs, or of antagonism, in which it is less. Two well-known response surface models representing no interaction are Loewe additivity and Bliss independence, and Loewe or Bliss synergism or antagonism is defined relative to these. We illustrate an approach to fitting these models for the case in which the marginal single drug dose-response relationships are represented by four-parameter logistic curves with common upper and lower limits, and where the response variable is normally distributed with a common variance about the dose-response curve. When the dose-response curves are not parallel, the relative potency of the two drugs varies according to the magnitude of the desired effect and the models for Loewe additivity and synergism/antagonism cannot be explicitly expressed. We present an iterative approach to fitting these models without the assumption of parallel dose-response curves. A goodness-of-fit test based on residuals is also described. Implementation using the SAS NLIN procedure is illustrated using data from a pre-clinical study. Copyright © 2007 John Wiley & Sons, Ltd.