253 resultados para Neural computers
Resumo:
The human electroencephalogram (EEG) is globally characterized by a 1/f power spectrum superimposed with certain peaks, whereby the "alpha peak" in a frequency range of 8-14 Hz is the most prominent one for relaxed states of wakefulness. We present simulations of a minimal dynamical network model of leaky integrator neurons attached to the nodes of an evolving directed and weighted random graph (an Erdos-Renyi graph). We derive a model of the dendritic field potential (DFP) for the neurons leading to a simulated EEG that describes the global activity of the network. Depending on the network size, we find an oscillatory transition of the simulated EEG when the network reaches a critical connectivity. This transition, indicated by a suitably defined order parameter, is reflected by a sudden change of the network's topology when super-cycles are formed from merging isolated loops. After the oscillatory transition, the power spectra of simulated EEG time series exhibit a 1/f continuum superimposed with certain peaks. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
More than thirty years ago, Amari and colleagues proposed a statistical framework for identifying structurally stable macrostates of neural networks from observations of their microstates. We compare their stochastic stability criterion with a deterministic stability criterion based on the ergodic theory of dynamical systems, recently proposed for the scheme of contextual emergence and applied to particular inter-level relations in neuroscience. Stochastic and deterministic stability criteria for macrostates rely on macro-level contexts, which make them sensitive to differences between different macro-levels.
Resumo:
This paper develops cycle-level FPGA circuits of an organization for a fast path-based neural branch predictor Our results suggest that practical sizes of prediction tables are limited to around 32 KB to 64 KB in current FPGA technology due mainly to FPGA area of logic resources to maintain the tables. However the predictor scales well in terms of prediction speed. Table sizes alone should not be used as the only metric for hardware budget when comparing neural-based predictor to predictors of totally different organizations. This paper also gives early evidence to shift the attention on to the recovery from mis-prediction latency rather than on prediction latency as the most critical factor impacting accuracy of predictions for this class of branch predictors.
Resumo:
In this paper we present the initial results using an artificial neural network to predict the onset of Parkinson's Disease tremors in a human subject. Data for the network was obtained from implanted deep brain electrodes. A tuned artificial neural network was shown to be able to identify the pattern of the onset tremor from these real time recordings.
Resumo:
The interface between humans and technology is a rapidly changing field. In particular as technological methods have improved dramatically so interaction has become possible that could only be speculated about even a decade earlier. This interaction can though take on a wide range of forms. Indeed standard buttons and dials with televisual feedback are perhaps a common example. But now virtual reality systems, wearable computers and most of all, implant technology are throwing up a completely new concept, namely a symbiosis of human and machine. No longer is it sensible simply to consider how a human interacts with a machine, but rather how the human-machine symbiotic combination interacts with the outside world. In this paper we take a look at some of the recent approaches, putting implant technology in context. We also consider some specific practical examples which may well alter the way we look at this symbiosis in the future. The main area of interest as far as symbiotic studies are concerned is clearly the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Often pilot tests and experimentation has been carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed briefly here. The paper however concentrates on human experimentation, in particular that carried out by the authors themselves, firstly to indicate what possibilities exist as of now with available technology, but perhaps more importantly to also show what might be possible with such technology in the future and how this may well have extensive social effects. The driving force behind the integration of technology with humans on a neural level has historically been to restore lost functionality in individuals who have suffered neurological trauma such as spinal cord damage, or who suffer from a debilitating disease such as lateral amyotrophic sclerosis. Very few would argue against the development of implants to enable such people to control their environment, or some aspect of their own body functions. Indeed this technology in the short term has applications for amelioration of symptoms for the physically impaired, such as alternative senses being bestowed on a blind or deaf individual. However the issue becomes distinctly more complex when it is proposed that such technology be used on those with no medical need, but instead who wish to enhance and augment their own bodies, particularly in terms of their mental attributes. These issues are discussed here in the light of practical experimental test results and their ethical consequences.