38 resultados para Nematodes - Biological control
Resumo:
Field experiments were conducted to quantify the natural levels of post-dispersal seed predation of arable weed species in spring barley and to identify the main groups of seed predators. Four arable weed species were investigated that were of high biodiversity value, yet of low to moderate competitive ability with the crop. These were Chenopodium album, Sinapis arvensis, Stellaria media and Polygonum aviculare. Exclusion treatments were used to allow selective access to dishes of seeds by different predator groups. Seed predation was highest early in the season, followed by a gradual decline in predation over the summer for all species. All species were taken by invertebrates. The activity of two phytophagous carabid genera showed significant correlations with seed predation levels. However, in general carabid activity was not related to seed predation and this is discussed in terms of the mainly polyphagous nature of many Carabid species that utilized the seed resource early in the season, but then switched to carnivory as prey populations increased. The potential relevance of post-dispersal seed predation to the development of weed management systems that maximize biological control through conservation and optimize herbicide use, is discussed.
Resumo:
Controlling Armillaria infections by physical and chemical methods alone is at present inadequate, ineffective, or impractical. Effective biological control either alone or in integration with another control strategy appears necessary. Biological control agents of Armillaria function by the antagonists inhibiting or preventing its rhizomorphic and mycelial development, by limiting it to substrate already occupied, by actively pre-empting the substrate, or by eliminating the pathogen from substrate it has already occupied. Among the most thoroughly investigated antagonists of Armillaria are Trichoderma species. Depending on the particular isolate of a Trichoderma species, control may be achieved by competition, production of antibiotics, or by mycoparasitism. The level of control is also influenced by the growth and carrier substrate of the antagonist, time of application in relation to the occurrence of the disease, and several environmental conditions. Among a range of the other antagonists are several cord-forming fungi and an isolate of Dactylium dendroides. Integrating biological methods with an appropriate method of chemical could control the disease more effectively. However it is essential to determine whether the antagonist or the fungicide should be applied first, and the time interval between.
Resumo:
The influence of temperature on life history traits of four Acyrthosiphon pisum clones was investigated, together with their resistance to one genotype of the fungal entomopathogen Erynia neoaphidis . There was no difference among aphid clones in development rate, but they did differ in fecundity. Both development rate and fecundity were influenced by temperature, but all clones showed similar responses to the changes in temperature (i.e. the interaction term was nonsignificant). However, there were significant differences among clones in susceptibility to the pathogen, and this was influenced by temperature. Furthermore, the clones differed in how temperature influenced susceptibility, with susceptibility rankings changing with temperature. Two clones showed changes in susceptibility which mirrored changes in the in vitro vegetative growth rate of E. neoaphidis at different temperatures, whereas two other clones differed considerably from this expected response. Such interactions between genotype and temperature may help maintain heritable variation in aphid susceptibility to fungal pathogen attack and have implications for our understanding of disease dynamics in natural populations. This study also highlights the difficulties of drawing conclusions about the efficacy of a biological control agent when only a restricted range of pest genotypes or environmental conditions are considered.
Resumo:
In the absence of equivalent research on genetically modified (GM) pest-resistant crops, their impact in pest management can be predicted from experience with traditionally bred varieties which share with GM crops the characteristic that the resistance is based on high expression of a single toxin. Such varieties lead to the rapid selection of tolerant pest strains, damage biological control and induce tolerance to synthetic pesticides. By contrast, polygenic and more broadly based resistant varieties will maintain their resistance for longer, and often synergise beneficially with biological control. The pests also become more susceptible to insecticides, giving the opportunity for applications which are selective in favour of natural enemies. However, although GM crops compare badly with traditional pest-resistant varieties, they compare favourably with insecticides, the technology they are most likely to replace.
Resumo:
This unique book is the first of its kind to explore the diversity of interactions between insects and birds. A group of international experts enthusiastically agreed to contribute to the four sections of the book following the success of an Entomological Club Conference on Insect and Bird Interactions. The first section covers population management issues, discussing effects on birds highly relevant to the planting of large areas of GM crops, new opportunities for increasing biodiversity in farming landscapes, and the novel aspect of managing insects by exploiting birds as biological control agents. This is followed by a section discussing the effects of insecticides on bird populations, and includes a contribution from the RSPB, as well as a re-appraisal of the effects of DDT on raptors. Next, the foraging behaviour of birds on insects is discussed, with chapters also on 'warning' coloration in insects and learning by birds. The first chapter in this section is unusual in having been written by an ophthalmologist and covers colour vision in birds, more specifically ultraviolet vision in relation to insect coloration. Finally, the authors look at insects that are parasites of birds or feed on the detritus in nests, and review the ecology and evolution of the co-adaptation of insect ectoparasites with birds. Insect and Bird Interactions is unparalleled in scope and coverage and will be of interest to entomologists, ornithologists, and ecologists alike.
Resumo:
Commercial mango production in Ghana is a relatively young industry faced with several pest problems including the mango stone weevil, Sternochetus mangiferae (F.). There is an urgent need to control this and other pests to facilitate access to the international export market for fresh mango fruits. A literature survey identifies stone weevil control tactics in the areas of host plant resistance, administrative and legislative controls, use of pesticides, biological control, cultural control and quarantine and phytosanitary measures that have been developed in other mango-producing areas. We assess these pest management approaches for their relevance to Ghana and West Africa, with emphasis on the research required for their appropriate, effective and sustainable use in the systems of mango production of the West African sub-region. The importance of processing and value addition technologies, as a means of circumventing the quarantine hurdles of S. mangiferae, is highlighted.
Resumo:
Synthetic pyrethroid insecticides are degraded almost entirely by ultraviolet (UV)-catalysed oxidation. A bioassay using the beetle Tribolium confusum duVal caged on bandages soaked in 0.04% a.i. cypermethrin showed large differences in residual insecticide-life under three plastic films available for cladding polytunnels. Cypermethrin exposed to a UV film that transmitted 70% of UVB and 80% of UVA killed all beetles for 8 weeks, compared to only 3 weeks for cypermethrin exposed in a clear plastic envelope. Cypermethrin under a UV-absorbing film that reduced the transmission of UVB and UVA to 14% and 50%, respectively, gave a complete kill for 17 weeks. Reducing the transmission of UVB to virtually zero, and that of UVA to only 3%, using a UV-opaque film prolonged the effective life of the cypermethrin residue to 26 weeks, and some beetles were still killed for a further 11 weeks. Even after this time, beetles exposed to cypermethrin from the UV-opaque treatment were still affected by the insecticide, and only showed near-normal mobility after 24 months of pesticide exposure to the UV-opaque film. These results have implications for the recommended intervals between cypermethrin treatment and crop harvest, and on the time of introduction of insect-based biological control agents, when UV-opaque films are used in commercial horticulture.
Resumo:
Piriformospora indica (Sebacinaceae) is a cultivable root endophytic fungus. It colonises the roots of a wide range of host plants. In many settings colonisation promotes host growth, increases yield and protects the host from fungal diseases. We evaluated the effect of P. indica on Fusarium head blight (FHB) disease of winter (cv. Battalion) and spring (cv. Paragon, Mulika, Zircon, Granary, KWS Willow and KWS Kilburn) wheat and consequent contamination by the mycotoxin deoxynivalenol (DON) under UK weather conditions. Interactions of P. indica with an arbuscular mycorrhizal fungus (Funneliformis mosseae), fungicide application (Aviator Xpro) and low and high fertiliser levels were considered. P. indica application reduced FHB disease severity and incidence by 70%. It decreased mycotoxin DON concentration of winter and spring wheat samples by 70% and 80% respectively. P. indica also increased above ground biomass, 1000 grain weight and total grain weight. P. indica reduced disease severity and increased yield in both high and low fertiliser levels. The effect of P. indica was compatible with F. mosseae and foliar fungicide application. P. indica did not have any effects on plant tissue nutrients. These results suggest that P. indica might be useful in biological control of Fusarium diseases of wheat.