132 resultados para Multivariate curve resolution-alternating least squares
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.
Resumo:
During the past 15 years, a number of initiatives have been undertaken at national level to develop ocean forecasting systems operating at regional and/or global scales. The co-ordination between these efforts has been organized internationally through the Global Ocean Data Assimilation Experiment (GODAE). The French MERCATOR project is one of the leading participants in GODAE. The MERCATOR systems routinely assimilate a variety of observations such as multi-satellite altimeter data, sea-surface temperature and in situ temperature and salinity profiles, focusing on high-resolution scales of the ocean dynamics. The assimilation strategy in MERCATOR is based on a hierarchy of methods of increasing sophistication including optimal interpolation, Kalman filtering and variational methods, which are progressively deployed through the Syst`eme d’Assimilation MERCATOR (SAM) series. SAM-1 is based on a reduced-order optimal interpolation which can be operated using ‘altimetry-only’ or ‘multi-data’ set-ups; it relies on the concept of separability, assuming that the correlations can be separated into a product of horizontal and vertical contributions. The second release, SAM-2, is being developed to include new features from the singular evolutive extended Kalman (SEEK) filter, such as three-dimensional, multivariate error modes and adaptivity schemes. The third one, SAM-3, considers variational methods such as the incremental four-dimensional variational algorithm. Most operational forecasting systems evaluated during GODAE are based on least-squares statistical estimation assuming Gaussian errors. In the framework of the EU MERSEA (Marine EnviRonment and Security for the European Area) project, research is being conducted to prepare the next-generation operational ocean monitoring and forecasting systems. The research effort will explore nonlinear assimilation formulations to overcome limitations of the current systems. This paper provides an overview of the developments conducted in MERSEA with the SEEK filter, the Ensemble Kalman filter and the sequential importance re-sampling filter.
Resumo:
Vibration-rotation spectra of HOCl have been measured at a resolution of 0.05 cm−1 to determine vibration rotation constants, and 35–37 Cl isotope shifts in the vibration frequencies. The spectrum of DOCl has also been recorded, and a preliminary analysis for the band origins has been made. The vibrational frequency data and centrifugal distortion constants have been used to determine the harmonic force field in a least-squares refinement; the force field obtained also gives a good fit to data on the vibrational contributions to the inertial defect. The equilibrium rotational constants of HOCl have been obtained, and an equilibrium structure has been estimated.
Resumo:
Vibration rotation spectra of HO15 NO and DO15 NO have been measured at a resolution of 0•04 cm-1 to determine the isotopic shifts in the vibrational band origins. These have been used together with recently determined data on the vibrational band origins, Coriolis constants, and centrifugal distorition constants, to determine the harmonic force field of both cis and trans nitrous acid in least squares refinement calculations. The results are discussed in relation to recent ab initio calculations, the inertia defects, and the torsional potential function.
Resumo:
High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.
Resumo:
The Fourier-transform spectrum of CH3F from 2800 to 3100 cm−1, obtained by Guelachvili in Orsay at a resolution of about 0.003 cm−1, was analyzed. The effective Hamiltonian used contained all symmetry allowed interactions up to second order in the Amat-Nielsen classification, together with selected third-order terms, amongst the set of nine vibrational basis functions represented by the states ν1(A1), ν4(E), 2ν2(A1), ν2 + ν5(E), 2ν50(A1), and 2ν5±2(E). A number of strong Fermi and Coriolis resonances are involved. The vibrational Hamiltonian matrix was not factorized beyond the requirements of symmetry. A total of 59 molecular parameters were refined in a simultaneous least-squares analysis to over 1500 upper-state energy levels for J ≤ 20 with a standard deviation of 0.013 cm−1. Although the standard deviation remains an order of magnitude greater than the precision of the measurements, this work breaks new ground in the simultaneous analysis of interacting symmetric top vibrational levels, in terms of the number of interacting vibrational states and the number of parameters in the Hamiltonian.
Resumo:
The rheological properties of fresh gluten in small amplitude oscillation in shear (SAOS) and creep recovery after short application of stress was related to the hearth breadbaking performance of wheat flours using the multivariate statistics partial least squares (PLS) regression. The picture was completed by dough mixing and extensional properties, flour protein size distribution determined by SE-HPLC, and high molecular weight glutenin subunit (HMW-GS) composition. The sample set comprised 20 wheat cultivars grown at two different levels of nitrogen fertilizer in one location. Flours yielding stiffer and more elastic glutens, with higher elastic and viscous moduli (G' and G") and lower tan 8 values in SAOS, gave doughs that were better able to retain their shape during proving and baking, resulting in breads of high form ratios. Creep recovery measurements after short application of stress showed that glutens from flours of good breadmaking quality had high relative elastic recovery. The nitrogen fertilizer level affected the protein size distribution by an increase in monomeric proteins (gliadins), which gave glutens of higher tan delta and flatter bread loaves (lower form ratio).
Resumo:
A construction algorithm for multioutput radial basis function (RBF) network modelling is introduced by combining a locally regularised orthogonal least squares (LROLS) model selection with a D-optimality experimental design. The proposed algorithm aims to achieve maximised model robustness and sparsity via two effective and complementary approaches. The LROLS method alone is capable of producing a very parsimonious RBF network model with excellent generalisation performance. The D-optimality design criterion enhances the model efficiency and robustness. A further advantage of the combined approach is that the user only needs to specify a weighting for the D-optimality cost in the combined RBF model selecting criterion and the entire model construction procedure becomes automatic. The value of this weighting does not influence the model selection procedure critically and it can be chosen with ease from a wide range of values.
Resumo:
Many kernel classifier construction algorithms adopt classification accuracy as performance metrics in model evaluation. Moreover, equal weighting is often applied to each data sample in parameter estimation. These modeling practices often become problematic if the data sets are imbalanced. We present a kernel classifier construction algorithm using orthogonal forward selection (OFS) in order to optimize the model generalization for imbalanced two-class data sets. This kernel classifier identification algorithm is based on a new regularized orthogonal weighted least squares (ROWLS) estimator and the model selection criterion of maximal leave-one-out area under curve (LOO-AUC) of the receiver operating characteristics (ROCs). It is shown that, owing to the orthogonalization procedure, the LOO-AUC can be calculated via an analytic formula based on the new regularized orthogonal weighted least squares parameter estimator, without actually splitting the estimation data set. The proposed algorithm can achieve minimal computational expense via a set of forward recursive updating formula in searching model terms with maximal incremental LOO-AUC value. Numerical examples are used to demonstrate the efficacy of the algorithm.
Resumo:
In this brief, a new complex-valued B-spline neural network is introduced in order to model the complex-valued Wiener system using observational input/output data. The complex-valued nonlinear static function in the Wiener system is represented using the tensor product from two univariate B-spline neural networks, using the real and imaginary parts of the system input. Following the use of a simple least squares parameter initialization scheme, the Gauss-Newton algorithm is applied for the parameter estimation, which incorporates the De Boor algorithm, including both the B-spline curve and the first-order derivatives recursion. Numerical examples, including a nonlinear high-power amplifier model in communication systems, are used to demonstrate the efficacy of the proposed approaches.
Resumo:
A four-wavelength MAD experiment on a new brominated octanucleotide is reported here. d[ACGTACG(5-BrU)], C77H81BrN30O32P7, (DNA) = 2235, tetragonal, P43212 (No. 96), a = 43.597, c = 26.268 Å, V = 49927.5 Å3, Z = 8, T = 100 K, R = 10.91% for 4312 reflections between 15.0 and 1.46 Å resolution. The self-complementary brominated octanucleotide d[ACGTACG(5-BrU)]2 has been crystallized and data measured to 1.45 Å at both 293 K and a second crystal flash frozen at 100 K. The latter data collection was carried out to the same resolution at the four wavelengths 0.9344, 0.9216, 0.9208 and 0.9003 Å, around the Br K edge at 0.92 Å and the structure determined from a map derived from a MAD data analysis using pseudo-MIR methodology, as implemented in the program MLPHARE. This is one of the first successful MAD phasing experiments carried out at Sincrotrone Elettra in Trieste, Italy. The structure was refined using the data measured at 0.9003 Å, anisotropic temperature factors and the restrained least-squares refinement implemented in the program SHELX96, and the helical parameters are compared with those previously determined for the isomorphous d(ACGTACGT)2 analogue. The asymmetric unit consists of a single strand of octamer with 96 water molecules. No countercations were located. The A-DNA helix geometry obtained has been analysed using the CURVES program.
Resumo:
We develop a complex-valued (CV) B-spline neural network approach for efficient identification and inversion of CV Wiener systems. The CV nonlinear static function in the Wiener system is represented using the tensor product of two univariate B-spline neural networks. With the aid of a least squares parameter initialisation, the Gauss-Newton algorithm effectively estimates the model parameters that include the CV linear dynamic model coefficients and B-spline neural network weights. The identification algorithm naturally incorporates the efficient De Boor algorithm with both the B-spline curve and first order derivative recursions. An accurate inverse of the CV Wiener system is then obtained, in which the inverse of the CV nonlinear static function of the Wiener system is calculated efficiently using the Gaussian-Newton algorithm based on the estimated B-spline neural network model, with the aid of the De Boor recursions. The effectiveness of our approach for identification and inversion of CV Wiener systems is demonstrated using the application of digital predistorter design for high power amplifiers with memory
Resumo:
This paper proposes and implements a new methodology for forecasting time series, based on bicorrelations and cross-bicorrelations. It is shown that the forecasting technique arises as a natural extension of, and as a complement to, existing univariate and multivariate non-linearity tests. The formulations are essentially modified autoregressive or vector autoregressive models respectively, which can be estimated using ordinary least squares. The techniques are applied to a set of high-frequency exchange rate returns, and their out-of-sample forecasting performance is compared to that of other time series models
Resumo:
We propose a new class of neurofuzzy construction algorithms with the aim of maximizing generalization capability specifically for imbalanced data classification problems based on leave-one-out (LOO) cross validation. The algorithms are in two stages, first an initial rule base is constructed based on estimating the Gaussian mixture model with analysis of variance decomposition from input data; the second stage carries out the joint weighted least squares parameter estimation and rule selection using orthogonal forward subspace selection (OFSS)procedure. We show how different LOO based rule selection criteria can be incorporated with OFSS, and advocate either maximizing the leave-one-out area under curve of the receiver operating characteristics, or maximizing the leave-one-out Fmeasure if the data sets exhibit imbalanced class distribution. Extensive comparative simulations illustrate the effectiveness of the proposed algorithms.