139 resultados para Multidimensional Compressible Flows


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Using a novel numerical method at unprecedented resolution, we demonstrate that structures of small to intermediate scale in rotating, stratified flows are intrinsically three-dimensional. Such flows are characterized by vortices (spinning volumes of fluid), regions of large vorticity gradients, and filamentary structures at all scales. It is found that such structures have predominantly three-dimensional dynamics below a horizontal scale LLR, where LR is the so-called Rossby radius of deformation, equal to the characteristic vertical scale of the fluid H divided by the ratio of the rotational and buoyancy frequencies f/N. The breakdown of two-dimensional dynamics at these scales is attributed to the so-called "tall-column instability" [D. G. Dritschel and M. de la Torre Juárez, J. Fluid. Mech. 328, 129 (1996)], which is active on columnar vortices that are tall after scaling by f/N, or, equivalently, that are narrow compared with LR. Moreover, this instability eventually leads to a simple relationship between typical vertical and horizontal scales: for each vertical wave number (apart from the vertically averaged, barotropic component of the flow) the average horizontal wave number is equal to f/N times the vertical wave number. The practical implication is that three-dimensional modeling is essential to capture the behavior of rotating, stratified fluids. Two-dimensional models are not valid for scales below LR. ©1999 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider the problem of determining the pressure and velocity fields for a weakly compressible fluid flowing in a two-dimensional reservoir in an inhomogeneous, anisotropic porous medium, with vertical side walls and variable upper and lower boundaries, in the presence of vertical wells injecting or extracting fluid. Numerical solution of this problem may be expensive, particularly in the case that the depth scale of the layer h is small compared to the horizontal length scale l. This is a situation which occurs frequently in the application to oil reservoir recovery. Under the assumption that epsilon=h/l<<1, we show that the pressure field varies only in the horizontal direction away from the wells (the outer region). We construct two-term asymptotic expansions in epsilon in both the inner (near the wells) and outer regions and use the asymptotic matching principle to derive analytical expressions for all significant process quantities. This approach, via the method of matched asymptotic expansions, takes advantage of the small aspect ratio of the reservoir, epsilon, at precisely the stage where full numerical computations become stiff, and also reveals the detailed structure of the dynamics of the flow, both in the neighborhood of wells and away from wells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare laboratory observations of equilibrated baroclinic waves in the rotating two-layer annulus, with numerical simulations from a quasi-geostrophic model. The laboratory experiments lie well outside the quasi-geostrophic regime: the Rossby number reaches unity; the depth-to-width aspect ratio is large; and the fluid contains ageostrophic inertia–gravity waves. Despite being formally inapplicable, the quasi-geostrophic model captures the laboratory flows reasonably well. The model displays several systematic biases, which are consequences of its treatment of boundary layers and neglect of interfacial surface tension and which may be explained without invoking the dynamical effects of the moderate Rossby number, large aspect ratio or inertia–gravity waves. We conclude that quasi-geostrophic theory appears to continue to apply well outside its formal bounds.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A survey of the non-radial flows (NRFs) during nearly five years of interplanetary observations revealed the average non-radial speed of the solar wind flows to be �30 km/s, with approximately one-half of the large (>100 km/s) NRFs associated with ICMEs. Conversely, the average non-radial flow speed upstream of all ICMEs is �100 km/s, with just over one-third preceded by large NRFs. These upstream flow deflections are analysed in the context of the large-scale structure of the driving ICME. We chose 5 magnetic clouds with relatively uncomplicated upstream flow deflections. Using variance analysis it was possible to infer the local axis orientation, and to qualitatively estimate the point of interception of the spacecraft with the ICME. For all 5 events the observed upstream flows were in agreement with the point of interception predicted by variance analysis. Thus we conclude that the upstream flow deflections in these events are in accord with the current concept of the large scale structure of an ICME: a curved axial loop connected to the Sun, bounded by a curved (though not necessarily circular)cross section.