81 resultados para Multi-layered analysis
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model.
Resumo:
When studying hydrological processes with a numerical model, global sensitivity analysis (GSA) is essential if one is to understand the impact of model parameters and model formulation on results. However, different definitions of sensitivity can lead to a difference in the ranking of importance of the different model factors. Here we combine a fuzzy performance function with different methods of calculating global sensitivity to perform a multi-method global sensitivity analysis (MMGSA). We use an application of a finite element subsurface flow model (ESTEL-2D) on a flood inundation event on a floodplain of the River Severn to illustrate this new methodology. We demonstrate the utility of the method for model understanding and show how the prediction of state variables, such as Darcian velocity vectors, can be affected by such a MMGSA. This paper is a first attempt to use GSA with a numerically intensive hydrological model
Resumo:
The vertical distribution of cloud cover has a significant impact on a large number of meteorological and climatic processes. Cloud top altitude and cloud geometrical thickness are then essential. Previous studies established the possibility of retrieving those parameters from multi-angular oxygen A-band measurements. Here we perform a study and comparison of the performances of future instruments. The 3MI (Multi-angle, Multi-channel and Multi-polarization Imager) instrument developed by EUMETSAT, which is an extension of the POLDER/PARASOL instrument, and MSPI (Multi-angles Spectro-Polarimetric Imager) develoloped by NASA's Jet Propulsion Laboratory will measure total and polarized light reflected by the Earth's atmosphere–surface system in several spectral bands (from UV to SWIR) and several viewing geometries. Those instruments should provide opportunities to observe the links between the cloud structures and the anisotropy of the reflected solar radiation into space. Specific algorithms will need be developed in order to take advantage of the new capabilities of this instrument. However, prior to this effort, we need to understand, through a theoretical Shannon information content analysis, the limits and advantages of these new instruments for retrieving liquid and ice cloud properties, and especially, in this study, the amount of information coming from the A-Band channel on the cloud top altitude (CTOP) and geometrical thickness (CGT). We compare the information content of 3MI A-Band in two configurations and that of MSPI. Quantitative information content estimates show that the retrieval of CTOP with a high accuracy is possible in almost all cases investigated. The retrieval of CGT seems less easy but possible for optically thick clouds above a black surface, at least when CGT > 1–2 km.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Excavations on the multi-period settlement at Old Scatness, Shetland have uncovered a number of Iron Age structures with compacted, floor-like layers. Thin section analysis was undertaken in order to investigate and compare the characteristics of these layers. The investigation also draws on earlier analyses of the Iron Age agricultural soil around the settlement and the midden deposits that accumulated within the settlement, to create a 'joined-up' analysis which considers the way material from the settlement was used and then recycled as fertiliser for the fields. Peat was collected from the nearby uplands and was used for fuel and possibly also for flooring. It is suggested that organic-rich floors from the structures were periodically removed and the material was spread onto the fields as fertilisers. More organic-rich material may have been used selectively for fertiliser, while the less organic peat ash was allowed to accumulate in middens. Several of the structures may have functioned as byres, which suggests a prehistoric plaggen system.
Resumo:
The variogram is essential for local estimation and mapping of any variable by kriging. The variogram itself must usually be estimated from sample data. The sampling density is a compromise between precision and cost, but it must be sufficiently dense to encompass the principal spatial sources of variance. A nested, multi-stage, sampling with separating distances increasing in geometric progression from stage to stage will do that. The data may then be analyzed by a hierarchical analysis of variance to estimate the components of variance for every stage, and hence lag. By accumulating the components starting from the shortest lag one obtains a rough variogram for modest effort. For balanced designs the analysis of variance is optimal; for unbalanced ones, however, these estimators are not necessarily the best, and the analysis by residual maximum likelihood (REML) will usually be preferable. The paper summarizes the underlying theory and illustrates its application with data from three surveys, one in which the design had four stages and was balanced and two implemented with unbalanced designs to economize when there were more stages. A Fortran program is available for the analysis of variance, and code for the REML analysis is listed in the paper. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
The technique of linear responsibility analysis is used for a retrospective case study of a private industrial development consisting of an engineering factory and offices. A multi-disciplinary professional practice was used to manage and design the project. The organizational structure adopted on the project is analysed using concepts from systems theory which are included in Walker's theoretical model of the structure of building project organizations (Walker, 1981). This model proposes that the process of buildings provision can be viewed as systems and sub-systems which are differentiated form each other at decision points. Further to this, the sub-systematic analysis of the relationship between the contributors gives a quantitative assessment of the efficiency of the organizational structure used. There was a high level of satisfaction with the completed project and this is reflected by the way in which the organization structure corresponded to the model's proposition. However, the project was subject to string environmental forces which the project organization was not capable of entirely overcoming.
Resumo:
The modelled El Nino-mean state-seasonal cycle interactions in 23 coupled ocean-atmosphere GCMs, including the recent IPCC AR4 models, are assessed and compared to observations and theory. The models show a clear improvement over previous generations in simulating the tropical Pacific climatology. Systematic biases still include too strong mean and seasonal cycle of trade winds. El Nino amplitude is shown to be an inverse function of the mean trade winds in agreement with the observed shift of 1976 and with theoretical studies. El Nino amplitude is further shown to be an inverse function of the relative strength of the seasonal cycle. When most of the energy is within the seasonal cycle, little is left for inter-annual signals and vice versa. An interannual coupling strength (ICS) is defined and its relation with the modelled El Nino frequency is compared to that predicted by theoretical models. An assessment of the modelled El Nino in term of SST mode (S-mode) or thermocline mode (T-mode) shows that most models are locked into a S-mode and that only a few models exhibit a hybrid mode, like in observations. It is concluded that several basic El Nino-mean state-seasonal cycle relationships proposed by either theory or analysis of observations seem to be reproduced by CGCMs. This is especially true for the amplitude of El Nino and is less clear for its frequency. Most of these relationships, first established for the pre-industrial control simulations, hold for the double and quadruple CO2 stabilized scenarios. The models that exhibit the largest El Nino amplitude change in these greenhouse gas (GHG) increase scenarios are those that exhibit a mode change towards a T-mode (either from S-mode to hybrid or hybrid to T-mode). This follows the observed 1976 climate shift in the tropical Pacific, and supports the-still debated-finding of studies that associated this shift to increased GHGs. In many respects, these models are also among those that best simulate the tropical Pacific climatology (ECHAM5/MPI-OM, GFDL-CM2.0, GFDL-CM2.1, MRI-CGM2.3.2, UKMO-HadCM3). Results from this large subset of models suggest the likelihood of increased El Nino amplitude in a warmer climate, though there is considerable spread of El Nino behaviour among the models and the changes in the subsurface thermocline properties that may be important for El Nino change could not be assessed. There are no clear indications of an El Nino frequency change with increased GHG.
Resumo:
Locality to other nodes on a peer-to-peer overlay network can be established by means of a set of landmarks shared among the participating nodes. Each node independently collects a set of latency measures to landmark nodes, which are used as a multi-dimensional feature vector. Each peer node uses the feature vector to generate a unique scalar index which is correlated to its topological locality. A popular dimensionality reduction technique is the space filling Hilbert’s curve, as it possesses good locality preserving properties. However, there exists little comparison between Hilbert’s curve and other techniques for dimensionality reduction. This work carries out a quantitative analysis of their properties. Linear and non-linear techniques for scaling the landmark vectors to a single dimension are investigated. Hilbert’s curve, Sammon’s mapping and Principal Component Analysis have been used to generate a 1d space with locality preserving properties. This work provides empirical evidence to support the use of Hilbert’s curve in the context of locality preservation when generating peer identifiers by means of landmark vector analysis. A comparative analysis is carried out with an artificial 2d network model and with a realistic network topology model with a typical power-law distribution of node connectivity in the Internet. Nearest neighbour analysis confirms Hilbert’s curve to be very effective in both artificial and realistic network topologies. Nevertheless, the results in the realistic network model show that there is scope for improvements and better techniques to preserve locality information are required.
Resumo:
Discrepancies between recent global earth albedo anomaly data obtained from the climate models, space and ground observations call for a new and better earth reflectance measurement technique. The SALEX (Space Ashen Light Explorer) instrument is a space-based visible and IR instrument for precise estimation of the global earth albedo by measuring the ashen light reflected off the shadowy side of the Moon from the low earth orbit. The instrument consists of a conventional 2-mirror telescope, a pair of a 3-mirror visible imager and an IR bolometer. The performance of this unique multi-channel optical system is sensitive to the stray light contamination due to the complex optical train incorporating several reflecting and refracting elements, associated mounts and the payload mechanical enclosure. This could be further aggravated by the very bright and extended observation target (i.e. the Moon). In this paper, we report the details of extensive stray light analysis including ghosts and cross-talks, leading to the optimum set of stray light precautions for the highest signal-to-noise ratio attainable.
Resumo:
Genetic parameters and breeding values for dairy cow fertility were estimated from 62 443 lactation records. Two-trait analysis of fertility and milk yield was investigated as a method to estimate fertility breeding values when culling or selection based on milk yield in early lactation determines presence or absence of fertility observations in later lactations. Fertility traits were calving interval, intervals from calving to first service, calving to conception and first to last service, conception success to first service and number of services per conception. Milk production traits were 305-day milk, fat and protein yield. For fertility traits, range of estimates of heritability (h(2)) was 0.012 to 0.028 and of permanent environmental variance (c(2)) was 0.016 to 0.032. Genetic correlations (r(g)) among fertility traits were generally high ( > 0.70). Genetic correlations of fertility with milk production traits were unfavourable (range -0.11 to 0.46). Single and two-trait analyses of fertility were compared using the same data set. The estimates of h(2) and c(2) were similar for two types of analyses. However, there were differences between estimated breeding values and rankings for the same trait from single versus multi-trait analyses. The range for rank correlation was 0.69-0.83 for all animals in the pedigree and 0.89-0.96 for sires with more than 25 daughters. As single-trait method is biased due to selection on milk yield, a multi-trait evaluation of fertility with milk yield is recommended. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
As the ideal method of assessing the nutritive value of a feedstuff, namely offering it to the appropriate class of animal and recording the production response obtained, is neither practical nor cost effective a range of feed evaluation techniques have been developed. Each of these balances some degree of compromise with the practical situation against data generation. However, due to the impact of animal-feed interactions over and above that of feed composition, the target animal remains the ultimate arbitrator of nutritional value. In this review current in vitro feed evaluation techniques are examined according to the degree of animal-feed interaction. Chemical analysis provides absolute values and therefore differs from the majority of in vitro methods that simply rank feeds. However, with no host animal involvement, estimates of nutritional value are inferred by statistical association. In addition given the costs involved, the practical value of many analyses conducted should be reviewed. The in sacco technique has made a substantial contribution to both understanding rumen microbial degradative processes and the rapid evaluation of feeds, especially in developing countries. However, the numerous shortfalls of the technique, common to many in vitro methods, the desire to eliminate the use of surgically modified animals for routine feed evaluation, paralleled with improvements in in vitro techniques, will see this technique increasingly replaced. The majority of in vitro systems use substrate disappearance to assess degradation, however, this provides no information regarding the quantity of derived end-products available to the host animal. As measurement of volatile fatty acids or microbial biomass production greatly increases analytical costs, fermentation gas release, a simple and non-destructive measurement, has been used as an alternative. However, as gas release alone is of little use, gas-based systems, where both degradation and fermentation gas release are measured simultaneously, are attracting considerable interest. Alternative microbial inocula are being considered, as is the potential of using multi-enzyme systems to examine degradation dynamics. It is concluded that while chemical analysis will continue to form an indispensable part of feed evaluation, enhanced use will be made of increasingly complex in vitro systems. It is vital, however, the function and limitations of each methodology are fully understood and that the temptation to over-interpret the data is avoided so as to draw the appropriate conclusions. With careful selection and correct application in vitro systems offer powerful research tools with which to evaluate feedstuffs. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
A range of funding schemes and policy instruments exist to effect enhancement of the landscapes and habitats of the UK. While a number of assessments of these mechanisms have been conducted, little research has been undertaken to compare both quantitatively and qualitatively their relative effectiveness across a range of criteria. It is argued that few tools are available for such a multi-faceted evaluation of effectiveness. A form of Multiple Criteria Decision Analysis (MCDA) is justified and utilized as a framework in which to evaluate the effectiveness of nine mechanisms in relation to the protection of existing areas of chalk grassland and the creation of new areas in the South Downs of England. These include established schemes, such as the Countryside Stewardship and Environmentally Sensitive Area Schemes, along with other less common mechanisms, for example, land purchase and tender schemes. The steps involved in applying an MCDA to evaluate such mechanisms are identified and the process is described. Quantitative results from the comparison of the effectiveness of different mechanisms are presented, although the broader aim of the paper is that of demonstrating the performance of MCDA as a tool for measuring the effectiveness of mechanisms aimed at landscape and habitat enhancement.
Resumo:
Milk supply from Mexican dairy farms does not meet demand and small-scale farms can contribute toward closing the gap. Two multi-criteria programming techniques, goal programming and compromise programming, were used in a study of small-scale dairy farms in central Mexico. To build the goal and compromise programming models, 4 ordinary linear programming models were also developed, which had objective functions to maximize metabolizable energy for milk production, to maximize margin of income over feed costs, to maximize metabolizable protein for milk production, and to minimize purchased feedstuffs. Neither multicriteria approach was significantly better than the other; however, by applying both models it was possible to perform a more comprehensive analysis of these small-scale dairy systems. The multi-criteria programming models affirm findings from previous work and suggest that a forage strategy based on alfalfa, rye-grass, and corn silage would meet nutrient requirements of the herd. Both models suggested that there is an economic advantage in rescheduling the calving season to the second and third calendar quarters to better synchronize higher demand for nutrients with the period of high forage availability.
Resumo:
We focus on the comparison of three statistical models used to estimate the treatment effect in metaanalysis when individually pooled data are available. The models are two conventional models, namely a multi-level and a model based upon an approximate likelihood, and a newly developed model, the profile likelihood model which might be viewed as an extension of the Mantel-Haenszel approach. To exemplify these methods, we use results from a meta-analysis of 22 trials to prevent respiratory tract infections. We show that by using the multi-level approach, in the case of baseline heterogeneity, the number of clusters or components is considerably over-estimated. The approximate and profile likelihood method showed nearly the same pattern for the treatment effect distribution. To provide more evidence two simulation studies are accomplished. The profile likelihood can be considered as a clear alternative to the approximate likelihood model. In the case of strong baseline heterogeneity, the profile likelihood method shows superior behaviour when compared with the multi-level model. Copyright (C) 2006 John Wiley & Sons, Ltd.