61 resultados para Mountain Chief Mine
Resumo:
A mechanism for amplification of mountain waves, and their associated drag, by parametric resonance is investigated using linear theory and numerical simulations. This mechanism, which is active when the Scorer parameter oscillates with height, was recently classified by previous authors as intrinsically nonlinear. Here it is shown that, if friction is included in the simplest possible form as a Rayleigh damping, and the solution to the Taylor-Goldstein equation is expanded in a power series of the amplitude of the Scorer parameter oscillation, linear theory can replicate the resonant amplification produced by numerical simulations with some accuracy. The drag is significantly altered by resonance in the vicinity of n/l_0 = 2, where l_0 is the unperturbed value of the Scorer parameter and n is the wave number of its oscillation. Depending on the phase of this oscillation, the drag may be substantially amplified or attenuated relative to its non-resonant value, displaying either single maxima or minima, or double extrema near n/l_0 = 2. Both non-hydrostatic effects and friction tend to reduce the magnitude of the drag extrema. However, in exactly inviscid conditions, the single drag maximum and minimum are suppressed. As in the atmosphere friction is often small but non-zero outside the boundary layer, modelling of the drag amplification mechanism addressed here should be quite sensitive to the type of turbulence closure employed in numerical models, or to computational dissipation in nominally inviscid simulations.
Resumo:
The direct impact of mountain waves on the atmospheric circulation is due to the deposition of wave momentum at critical levels, or levels where the waves break. The first process is treated analytically in this study within the framework of linear theory. The variation of the momentum flux with height is investigated for relatively large shears, extending the authors’ previous calculations of the surface gravity wave drag to the whole atmosphere. A Wentzel–Kramers–Brillouin (WKB) approximation is used to treat inviscid, steady, nonrotating, hydrostatic flow with directional shear over a circular mesoscale mountain, for generic wind profiles. This approximation must be extended to third order to obtain momentum flux expressions that are accurate to second order. Since the momentum flux only varies because of wave filtering by critical levels, the application of contour integration techniques enables it to be expressed in terms of simple 1D integrals. On the other hand, the momentum flux divergence (which corresponds to the force on the atmosphere that must be represented in gravity wave drag parameterizations) is given in closed analytical form. The momentum flux expressions are tested for idealized wind profiles, where they become a function of the Richardson number (Ri). These expressions tend, for high Ri, to results by previous authors, where wind profile effects on the surface drag were neglected and critical levels acted as perfect absorbers. The linear results are compared with linear and nonlinear numerical simulations, showing a considerable improvement upon corresponding results derived for higher Ri.
Resumo:
Internal gravity waves generated in two-layer stratified shear flows over mountains are investigated here using linear theory and numerical simulations. The impact on the gravity wave drag of wind profiles with constant unidirectional or directional shear up to a certain height and zero shear above, with and without critical levels, is evaluated. This kind of wind profile, which is more realistic than the constant shear extending indefinitely assumed in many analytical studies, leads to important modifications in the drag behavior due to wave reflection at the shear discontinuity and wave filtering by critical levels. In inviscid, nonrotating, and hydrostatic conditions, linear theory predicts that the drag behaves asymmetrically for backward and forward shear flows. These differences primarily depend on the fraction of wavenumbers that pass through their critical level before they are reflected by the shear discontinuity. If this fraction is large, the drag variation is not too different from that predicted for an unbounded shear layer, while if it is small the differences are marked, with the drag being enhanced by a considerable factor at low Richardson numbers (Ri). The drag may be further enhanced by nonlinear processes, but its qualitative variation for relatively low Ri is essentially unchanged. However, nonlinear processes seem to interact constructively with shear, so that the drag for a noninfinite but relatively high Ri is considerably larger than the drag without any shear at all.
Resumo:
An analytical model is developed to predict the surface drag exerted by internal gravity waves on an isolated axisymmetric mountain over which there is a stratified flow with a velocity profile that varies relatively slowly with height. The model is linear with respect to the perturbations induced by the mountain, and solves the Taylor–Goldstein equation with variable coefficients using a Wentzel–Kramers–Brillouin (WKB) approximation, formally valid for high Richardson numbers, Ri. The WKB solution is extended to a higher order than in previous studies, enabling a rigorous treatment of the effects of shear and curvature of the wind profile on the surface drag. In the hydrostatic approximation, closed formulas for the drag are derived for generic wind profiles, where the relative magnitude of the corrections to the leading-order drag (valid for a constant wind profile) does not depend on the detailed shape of the orography. The drag is found to vary proportionally to Ri21, decreasing as Ri decreases for a wind that varies linearly with height, and increasing as Ri decreases for a wind that rotates with height maintaining its magnitude. In these two cases the surface drag is predicted to be aligned with the surface wind. When one of the wind components varies linearly with height and the other is constant, the surface drag is misaligned with the surface wind, especially for relatively small Ri. All these results are shown to be in fairly good agreement with numerical simulations of mesoscale nonhydrostatic models, for high and even moderate values of Ri.
Resumo:
The surface drag force produced by trapped lee waves and upward propagating waves in non-hydrostatic stratified flow over a mountain ridge is explicitly calculated using linear theory for a two-layer atmosphere with piecewise-constant static stability and wind speed profiles. The behaviour of the drag normalized by its hydrostatic single-layer reference value is investigated as a function of the ratio of the Scorer parameters in the two layers l_2/l_1 and of the corresponding dimensionless interface height l_1 H, for selected values of the dimensionless ridge width l_1 a and ratio of wind speeds in the two layers. When l_2/l_1 → 1, the propagating wave drag approaches 1 in approximately hydrostatic conditions, and the trapped lee wave drag vanishes. As l_2/l_1 decreases, the propagating wave drag progressively displays an oscillatory behaviour with l_1 H, with maxima of increasing magnitude due to constructive interference of reflected waves in the lower layer. The trapped lee wave drag shows localized maxima associated with each resonant trapped lee wave mode, occurring for small l_2/l_1 and slightly higher values of l_1 H than the propagating wave drag maxima. As l1a decreases, i.e. the flow becomes more non-hydrostatic, the propagating wave drag decreases and the regions of non-zero trapped lee wave drag extend to higher l_2/l_1. These results are confirmed by numerical simulations for l_2/l_1 = 0.2. In parameter ranges of meteorological relevance, the trapped lee wave drag may have a magnitude comparable to that of propagating wave drag, and be larger than the reference single-layer drag. This may have implications for drag parametrization in global climate and weather-prediction models.
Resumo:
Many modern cities locate in the mountainous areas, like Hong Kong, Phoenix City and Los Angles. It is confirmed in the literature that the mountain wind system developed by differential heating or cooling can be very beneficial in ventilating the city nearby and alleviating the UHI effect. However, the direct interaction of mountain wind with the natural-convection circulation due to heated urban surfaces has not been studied, to our best knowledge. This kind of unique interaction of two kinds of airflow structures under calm and neutral atmospheric environment is investigated in this paper by CFD approach. A physical model comprising a simple mountain and three long building blocks (forming two street canyons) is firstly developed. Different airflow structures are identified within the conditions of different mountain-building height ratios (R=Hm/Hb) by varying building height but fixing mountain height. It is found that the higher ventilation rate in the street canyons is expected in the cases of smaller mountain-building ratios, indicating the stronger natural convection due to increasing heated building surfaces. However, there is the highest air change rate (ACH) in the lowest-building-height case and most of the air is advective into the street canyon through the top open area, highlighting the important role played by the mountain wind. In terms of the ventilation efficiency, it is shown that the smallest R case enjoys the best air change efficiency followed by the highest R case, while the worst ventilative street canyons occur at the middle R case. In the end, a gap across the streets is introduced in the modeling. The existence of the gap can greatly channel the mountain wind and distribute the air into streets nearby. Thus the ACH can be doubled and air quality can be significantly improved.
Resumo:
This study investigates the possibilities and limitations of using Regional Climate Model (RCM) output for the simulation of alpine permafrost scenarios. It focuses on the general problem of scale mismatch between RCMs and impact models and, in particular, the special challenges that arise when driving an impact model in topographically complex high-mountain environments with the output of an RCM. Two approaches are introduced that take into account the special difficulties in such areas, and thus enable the use of RCM for alpine permafrost scenario modelling. Intended as an initial example, they are applied at the area of Corvatsch (Upper Engadine, Switzerland) in order to demonstrate and discuss the application of the two approaches, rather than to provide an assessment of future changes in permafrost occurrence. There are still many uncertainties and inaccuracies inherent in climate and impact models, which increase when driving one model with the output of the other. Nevertheless, our study shows that the use of RCMs offers new and promising perspectives for the simulation of high-mountain permafrost scenarios
Resumo:
Purpose – The purpose of this paper is to explore, from a practical point-of-view, a number of key strategic issues that critically influence organisations' competitiveness. Design/methodology/approach – The paper is based on a semi-structured interview with Mr Paul Walsh, CEO of Diageo. Diageo is a highly successful company and Mr Walsh has played a central role in making Diageo the number one branded drink company in the world. Findings – The paper discusses the key attributes of successful merger, lessons from a complex cross boarder acquisition, rationale for strategic alliance with competitors, distinctive resources, and the role of corporate social responsibility. Research limitations/implications – It is not too often that management scholars have the opportunity to discuss with the CEOs of large multinationals the rational of key strategic decisions. In this paper these issues are explored from the perspective of a CEO of a large and successful company. The lessons, while not generalisable, offer unique insights to students of management and management researchers. Originality/value – The paper offers a bridge between theory and practice. It demonstrates that from Diageo's perspective the distinctive capabilities are intangible. It also offers insight into how to successfully execute strategic decision. In terms of originality it offers a view from the top, which is often missing from strategy research.
Resumo:
Purpose – This paper aims to articulate strategic dilemmas faced by a Chief Executive of a highly successful company and how such dilemmas were resolved. Design/methodology/approach – The case is based on a semi-structured interview with Mr Jeremy Darroch – Chief Executive of BSkyB – and analysis of documentary evidence. Findings – It is often difficult to implement strategies that simultaneously yield high organic growth rate, innovation, and a healthy balance-sheet. The paper sheds light on how Sky has met this challenge. Research limitations/implications – The research offers a unique insight into the views of a principal strategist and articulates the background to offer context, however, because of its design the findings are not generalisable. Originality/value – Very few articles offer insight into the thinking of those with principal responsibility for design and delivery of strategy. This paper offers such an insight based on a detailed interview with a highly successful Chief Executive.
Resumo:
Purpose – Mergers and acquisitions are among the most intensely used strategic decisions. Yet research by both academics and consulting groups suggests that many mergers and acquisitions fail to add value. On the other hand there are many companies that successfully use mergers and acquisition to grow and add shareholder value. One such company is WPP. The aim of this paper is to explore why WPP has been successful in its acquisition strategy while so many other companies fail. Design/methodology/approach – The paper draws on documentary evidence and a semi-structured interview with Sir Martin Sorrell – Chief Executive and founder of WPP. Research limitations/implications – The case study offers a unique insight into thinking of a successful acquirer and sheds light on how mergers and acquisitions are managed by WPP. However, because of its design the findings are not generalisable. Originality/value – This case study sheds light on how mergers and acquisitions can be used to create a £9 billion company from a standing start. Furthermore, very few case studies offer insight into the thinking of entrepreneurial Chief Executives who established the business, grew it to become the largest and most profitable marketing services company in the world and engineered close to 300 acquisitions.
Resumo:
Purpose – The focus of extant strategy literature is on for-profit organisations and within these group public organisations. There are other forms of organisations and following the deep recession of 2008 there is greater interest in other forms of organisation. In this case study and interview the aim is to examine strategy, strategic decisions and strategic management of a not-for-profit provident. Design/methodology/approach – The paper draws on documentary evidence and a semi-structured interview with Ray King, chief executive of Bupa. The perspective of CEO is key in strategy and such perspectives are relatively rarer. Findings – Bupa invests its surplus to provide better healthcare. Free from the pressures of quarterly reporting and shareholders it can pursue long-term value creation for members rather than short-term surpluses. Research limitations/implications – The case study and interview offers a unique insight into strategy-making within a successful mutual provident that has grown organically and externally becoming an international leader in health insurance. Originality/value – This case study sheds light on strategy-making within a not-for-profit provident that has diversified and grown significantly over the past six decades. Furthermore, very few case studies offer insight into the thinking of a chief executive who has successfully managed a business in a turbulent environment.
Resumo:
The transformations in Slovak agriculture from the 1950s to the present day, considering both the generic (National and EU) and site-specific (local) drivers of landscape change, were analysed in five mountain study areas in the country. An interdisciplinary approach included analysis of population trends, evaluation of land use and landscape change combined with exploration of the perceptions of local stakeholders and results of previous biodiversity studies. The generic processes active from the 1950s to 1970s were critical for all study areas with impacts lasting right up until the present day. Agricultural collectivisation, agricultural intensification and land abandonment had negative effects in all study areas. However, the precise impacts on the landscape were different in the different study areas due to site-specific attributes (e.g. population trends, geographic localisation and local attitudes and opportunities), and these played a decisive role in determining the trajectory of change. Regional contrasts in rural development between these territories have increased in the last two decades, also due to the imperfect preconditions of governmental support. The recent Common Agricultural Policy developments are focused on maintenance of intensive large-scale farming rather than direct enhancement of agro-biodiversity and rural development at the local scale. In this context, local, site-specific attributes can and must form an essential part of rural development plans, to meet the demands for management of the diversity of agricultural mountain landscapes and facilitate the multifunctional role of agriculture.