96 resultados para Modification of the aromatic ring
Resumo:
The nature and extent of pre-Columbian (pre-1492 AD) human impact in Amazonia is a contentious issue. The Bolivian Amazon has yielded some of the most impressive evidence for large and complex pre-Columbian societies in the Amazon basin, yet there remains relatively little data concerning the land use of these societies over time. Palaeoecology, when integrated with archaeological data, has the potential to fill these gaps in our knowledge. We present a 6,000-year record of anthropogenic burning, agriculture and vegetation change, from an oxbow lake located adjacent to a pre-Columbian ring-ditch in north-east Bolivia (13°15’44” S, 63°42’37” W). Human occupation around the lake site is inferred from pollen and phytoliths of maize (Zea mays L.) and macroscopic charcoal evidence of anthropogenic burning. First occupation around the lake was radiocarbon dated to ~2500 years BP. The persistence of maize in the record from ~1850 BP suggests that it was an important crop grown in the ringditch region in pre-Columbian times, and abundant macroscopic charcoal suggests that pre-Columbian land management entailed more extensive burning of the landscape than the slash-and-burn agriculture practised around the site today. The site was occupied continuously until near-modern times, although there is evidence for a decline in agricultural intensity or change in land use strategy, and possible population decline, from ~600-500 BP. The long and continuous occupation, which predates the establishment of rainforest in the region, suggests that pre-Columbian land use may have had a significant influence on ecosystem development at this site over the last ~2000 years.
Resumo:
Chemical methods to predict the bioavailable fraction of organic contaminants are usually validated in the literature by comparison with established bioassays. A soil spiked with polycyclic aromatic hydrocarbons (PAHs) was aged over six months and subjected to butanol, cyclodextrin and tenax extractions as well as an exhaustive extraction to determine total PAH concentrations at several time points. Earthworm (Eisenia fetida) and rye grass root (Lolium multiflorum) accumulation bioassays were conducted in parallel. Butanol extractions gave the best relationship with earthworm accumulation (r2 ≤ 0.54, p ≤ 0.01); cyclodextrin, butanol and acetone–hexane extractions all gave good predictions of accumulation in rye grass roots (r2 ≤ 0.86, p ≤ 0.01). However, the profile of the PAHs extracted by the different chemical methods was significantly different (p < 0.01) to that accumulated in the organisms. Biota accumulated a higher proportion of the heavier 4-ringed PAHs. It is concluded that bioaccumulation is a complex process that cannot be predicted by measuring the bioavailable fraction alone. The ability of chemical methods to predict PAH accumulation in Eisenia fetida and Lolium multiflorum was hindered by the varied metabolic fate of the different PAHs within the organisms.
Resumo:
The Robert–Asselin time filter is widely used in numerical models of weather and climate. It successfully suppresses the spurious computational mode associated with the leapfrog time-stepping scheme. Unfortunately, it also weakly suppresses the physical mode and severely degrades the numerical accuracy. These two concomitant problems are shown to occur because the filter does not conserve the mean state, averaged over the three time slices on which it operates. The author proposes a simple modification to the Robert–Asselin filter, which does conserve the three-time-level mean state. When used in conjunction with the leapfrog scheme, the modification vastly reduces the impacts on the physical mode and increases the numerical accuracy for amplitude errors by two orders, yielding third-order accuracy. The modified filter could easily be incorporated into existing general circulation models of the atmosphere and ocean. In principle, it should deliver more faithful simulations at almost no additional computational expense. Alternatively, it may permit the use of longer time steps with no loss of accuracy, reducing the computational expense of a given simulation.
Resumo:
The East Asian Winter Monsoon (EAWM) and Siberian High (SH) are inherently related, based on prior studies of instrumental data available for recent decades (since 1958). Here we develop an extended instrumental EAWM index since 1871 that correlates significantly with the SH. These two indices show common modes of variation on the biennial (2-3 year) time scale. We also develop an index of the pressure gradient between the SH and the Aleutian Low, a gradient which critically impacts EAWM variability. This difference series, based on tree-ring reconstructions of the SH and the North Pacific Index (NPI) over the past 400 years, shows that the weakening of this gradient in recent decades has not been unusual in a long-term context. Correlations between the SH series and a tree-ring reconstruction of the El Nino-Southern Oscillation (ENSO) suggest a variable tropical-higher latitude teleconnection.
Resumo:
An understanding of the primary pathways of plant uptake of organic pollutants is important to enable the risks from crops grown on contaminated soils to be assessed. A series of experiments were undertaken to quantify the importance of the pathways of contamination and the Subsequent transport within the plant using white clover plants grown in solution culture. Root uptake was primarily an absorption process, but a component of the contamination was a result of the transpiration flux to the shoot for higher Solubility compounds. The root contamination can be easily predicted using a simple relationship with K-OW, although if a composition model was used based on lipid content, a significant under prediction of the contamination was observed. Shoot uptake was driven by the transpiration stream flux which was related to the solubility of the individual PAH rather than the K-OW. However, the experiment was over a short duration, 6 days, and models based on K-OW may be better for crops grown in the field where the vegetation will approach equilibrium and transpiration cannot easily be measured, A significant fraction of the shoot contamination resulted from aerial deposition derived from volatilized PAH. This pathway was more significant for compounds approaching log K-OA > 9 and log K-AW < -3. The shoot uptake pathways need further investigation to enable them to be modeled separately, There was no evidence of significant systemic transport of the PAR so transfer outside the transpiration stream is likely to be limited.
Resumo:
A total of 94 European eels (Anguilla anguilla) were collected from five estuaries in the UK. The deconjugated metabolites of polycyclic aromatic hydrocarbons (PAHs) in the bile of the eels were separated using HPLC. Six PAH metabolites were identified: 1-hydroxy (1-OH) metabolites of phenanthrene, pyrene and chrysene; and the 1-OH, 3-OH and 7,8 dihydrodiol metabolites of benzo[a]pyrene (BaP). The mean concentration of the six metabolites was greatest in eels from the Tyne (49 muM) followed by the Wear (33 muM), Tees (19 muM), Thames (4 muM) and Severn (2 muM) estuaries. Although 1-OH pyrene was always the dominant compound, there were significant differences (P<0.05) between sites and between estuaries for some metabolites. Normalising the molar concentration of the bile metabolites to the bile biliverdin absorbance reduced sample variation. When the metabolites identified were-each expressed as a percentage of the total detected, the metabolite profile was characteristic for each estuary. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Flavonoids are a diverse class of polyphenolic compounds that are produced as a result of plant secondary metabolism. They are known to play a multifunctional role in rhizospheric plant-microbe and plant-plant communication. Most familiar is their function as a signal in initiation of the legume-rhizobia symbiosis, but, flavonoids may also be signals in the establishment of arbuscular mycorrhizal symbiosis and are known agents in plant defence and in allelopathic interactions. Flavonoid perception by, and impact on, their microbial targets (e.g. rhizobia, plant pathogens) is relatively well characterized. However, potential impacts on 'non-target' rhizosphere inhabitants ('non-target' is used to distinguish those microorganisms not conventionally known as targets) have not been thoroughly investigated. Thus, this review first summarizes the conventional roles of flavonoids as nod gene inducers, phytoalexins and allelochemicals before exploring questions concerning 'non-target' impacts. We hypothesize that flavonoids act to shape rhizosphere microbial community structure because they represent a potential source of carbon and toxicity and that they impact on rhizosphere function, for example, by accelerating the biodegradation of xenobiotics. We also examine the reverse question, 'how do rhizosphere microbial communities impact on flavonoid signals?' The presence of microorganisms undoubtedly influences the quality and quantity of flavonoids present in the rhizosphere, both through modification of root exudation patterns and microbial catabolism of exudates. Microbial alteration and attenuation of flavonoid signals may have ecological consequences for below-ground plant-microbe and plant-plant interaction. We have a lack of knowledge concerning the composition, concentration and bioavailability of flavonoids actually experienced by microbes in an intact rhizosphere, but this may be addressed through advances in microspectroscopic and biosensor techniques. Through the use of plant mutants defective in flavonoid biosynthesis, we may also start to address the question of the significance of flavonoids in shaping rhizosphere community structure and function.
Resumo:
There is growing evidence that the interocean exchange south of Africa is an important link in the global overturning circulation of the ocean, the so‐called ocean conveyer belt. At this location, warm and salty Indian Ocean waters enter the South Atlantic and are pulled by currents that eventually reach the North Atlantic, where water cools and sinks. A major contributor to the exchange is the frequent shedding of ring eddies from the termination of the Agulhas Current south of the tip of Africa. This shedding is controlled by developments far upstream in the Indian Ocean, and variations in this ‘Agulhas Leakage’ can lead to changes in the rate and stability of the Atlantic overturning, with possible associated global climate variations [Weijer et al., 1999]. Regional climate variations in the tropical and subtropical Indian Ocean are known to affect the whole system of the Agulhas Current, including the interocean exchanges. This article reports on some of the seminal results of ongoing multinational, multidisciplinary projects that explore these issues.
Resumo:
The theory of rotational-pucker-vibrational transitions in the vibrational spectrum of cyclobutane is reviewed. Puckering sideband structure on the 1453 cm-1v14 infra-red fundamental of C4H8 has been observed and analysed, in terms of two slightly different puckering potential functions for the ground and the excited vibrational states. The results have been fitted to quartic-quadratic potential functions in the puckering coordinate, with a barrier to inversion of 503 cm-1 (1•44 kcal mole-1 = 6•02 kJ mole-1) in the ground state and 491 cm-1 in the excited state ν14 = 1. For reasonable assumptions about the reduced mass, the equilibrium dihedral angle of the C4 ring is determined to be about 35°, in agreement with previous estimates. Ueda and Shimanouchi's observations on the 2878 cm-1 C4H8 band have been re-analysed, and puckering sidebands have also been observed and analysed for the 1083 cm-1v14 infra-red fundamental of C4D8. Pure puckering transitions have been observed in the Raman spectrum of C4H8 vapour. All of these observations are shown to be consistent with the same ground state puckering potential function.
Resumo:
A full assessment of para-virtualization is important, because without knowledge about the various overheads, users can not understand whether using virtualization is a good idea or not. In this paper we are very interested in assessing the overheads of running various benchmarks on bare-‐metal, as well as on para-‐virtualization. The idea is to see what the overheads of para-‐ virtualization are, as well as looking at the overheads of turning on monitoring and logging. The knowledge from assessing various benchmarks on these different systems will help a range of users understand the use of virtualization systems. In this paper we assess the overheads of using Xen, VMware, KVM and Citrix, see Table 1. These different virtualization systems are used extensively by cloud-‐users. We are using various Netlib1 benchmarks, which have been developed by the University of Tennessee at Knoxville (UTK), and Oak Ridge National Laboratory (ORNL). In order to assess these virtualization systems, we run the benchmarks on bare-‐metal, then on the para-‐virtualization, and finally we turn on monitoring and logging. The later is important as users are interested in Service Level Agreements (SLAs) used by the Cloud providers, and the use of logging is a means of assessing the services bought and used from commercial providers. In this paper we assess the virtualization systems on three different systems. We use the Thamesblue supercomputer, the Hactar cluster and IBM JS20 blade server (see Table 2), which are all servers available at the University of Reading. A functional virtualization system is multi-‐layered and is driven by the privileged components. Virtualization systems can host multiple guest operating systems, which run on its own domain, and the system schedules virtual CPUs and memory within each Virtual Machines (VM) to make the best use of the available resources. The guest-‐operating system schedules each application accordingly. You can deploy virtualization as full virtualization or para-‐virtualization. Full virtualization provides a total abstraction of the underlying physical system and creates a new virtual system, where the guest operating systems can run. No modifications are needed in the guest OS or application, e.g. the guest OS or application is not aware of the virtualized environment and runs normally. Para-‐virualization requires user modification of the guest operating systems, which runs on the virtual machines, e.g. these guest operating systems are aware that they are running on a virtual machine, and provide near-‐native performance. You can deploy both para-‐virtualization and full virtualization across various virtualized systems. Para-‐virtualization is an OS-‐assisted virtualization; where some modifications are made in the guest operating system to enable better performance. In this kind of virtualization, the guest operating system is aware of the fact that it is running on the virtualized hardware and not on the bare hardware. In para-‐virtualization, the device drivers in the guest operating system coordinate the device drivers of host operating system and reduce the performance overheads. The use of para-‐virtualization [0] is intended to avoid the bottleneck associated with slow hardware interrupts that exist when full virtualization is employed. It has revealed [0] that para-‐ virtualization does not impose significant performance overhead in high performance computing, and this in turn this has implications for the use of cloud computing for hosting HPC applications. The “apparent” improvement in virtualization has led us to formulate the hypothesis that certain classes of HPC applications should be able to execute in a cloud environment, with minimal performance degradation. In order to support this hypothesis, first it is necessary to define exactly what is meant by a “class” of application, and secondly it will be necessary to observe application performance, both within a virtual machine and when executing on bare hardware. A further potential complication is associated with the need for Cloud service providers to support Service Level Agreements (SLA), so that system utilisation can be audited.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Extractability and recovery of cellulose from cell walls influences many industrial processes and also the utilisation of biomass for energy purposes. The utility of genetic manipulation of lignin has proven potential for optimising such processes and is also advantageous for the environment. Hemicelluloses, particularly secondary wall xylans, also influence the extractability of cellulose. UDP-glucuronate decarboxylase produces UDP-xylose, the precursor for xylans and the effect of its down-regulation on cell wall structure and cellulose extractability in transgenic tobacco has been investigated. Since there are a number of potential UDP-glucuronate decarboxylase genes, a 490 bp sequence of high similarity between members of the family, was chosen for general alteration of the expression of the gene family. Sense and antisense transgenic lines were analysed for enzyme activity using a modified and optimised electrophoretic assay, for enzyme levels by western blotting and for secondary cell wall composition. Some of the down-regulated antisense plants showed high glucose to xylose ratios in xylem walls due to less xylose-containing polymers, while arabinose and uronic acid contents, which could also have been affected by any change in UDP-xylose provision, were unchanged. The overall morphology and stem lignin content of the modified lines remained little changed compared with wild-type. However, there were some changes in vascular organisation and reduction of xylans in the secondary walls was confirmed by immunocytochemistry. Pulping analysis showed a decreased pulp yield and a higher Kappa number in some lines compared with controls, indicating that they were less delignified, although the level of residual alkali was reduced. Such traits probably indicate that lignin was less available for removal in a reduced background of xylans. However, the viscosity was higher in most antisense lines, meaning that the cellulose was less broken-down during the pulping process. This is one of the first studies of a directed manipulation of hemicellulose content on cellulose extractability and shows both positive and negative outcomes.
Resumo:
Many compounds in the environment have been shown capable of binding to cellular oestrogen receptors and then mimicking the actions of physiological oestrogens. The widespread origin and diversity in chemical structure of these environmental oestrogens is extensive but to date such compounds have been organic and in particular phenolic or carbon ring structures of varying structural complexity. Recent reports of the ability of certain metal ions to also bind to oestrogen receptors and to give rise to oestrogen agonist responses in vitro and in vivo has resulted in the realisation that environmental oestrogens can also be inorganic and such xenoestrogens have been termed metalloestrogens. This report highlights studies which show metalloestrogens to include aluminium, antimony, arsenite, barium, cadmium, chromium (Cr(II)), cobalt, copper, lead, mercury, nickel, selenite, tin and vanadate. The potential for these metal ions to add to the burden of aberrant oestrogen signalling within the human breast is discussed. Copyright (c) 2006 John Wiley & Sons, Ltd.