39 resultados para Model selection criteria
Resumo:
A fundamental principle in practical nonlinear data modeling is the parsimonious principle of constructing the minimal model that explains the training data well. Leave-one-out (LOO) cross validation is often used to estimate generalization errors by choosing amongst different network architectures (M. Stone, "Cross validatory choice and assessment of statistical predictions", J. R. Stast. Soc., Ser. B, 36, pp. 117-147, 1974). Based upon the minimization of LOO criteria of either the mean squares of LOO errors or the LOO misclassification rate respectively, we present two backward elimination algorithms as model post-processing procedures for regression and classification problems. The proposed backward elimination procedures exploit an orthogonalization procedure to enable the orthogonality between the subspace as spanned by the pruned model and the deleted regressor. Subsequently, it is shown that the LOO criteria used in both algorithms can be calculated via some analytic recursive formula, as derived in this contribution, without actually splitting the estimation data set so as to reduce computational expense. Compared to most other model construction methods, the proposed algorithms are advantageous in several aspects; (i) There are no tuning parameters to be optimized through an extra validation data set; (ii) The procedure is fully automatic without an additional stopping criteria; and (iii) The model structure selection is directly based on model generalization performance. The illustrative examples on regression and classification are used to demonstrate that the proposed algorithms are viable post-processing methods to prune a model to gain extra sparsity and improved generalization.
Resumo:
In Central Brazil, the long-term sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, ‘asset value of cattle (representing cattle ownership)' and ‘present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics, and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple ‘no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil.
Resumo:
In Central Brazil, the long-term, sustainability of beef cattle systems is under threat over vast tracts of farming areas, as more than half of the 50 million hectares of sown pastures are suffering from. degradation. Overgrazing practised to maintain high stocking rates is regarded as one of the main causes. High stocking rates are deliberate and crucial decisions taken by the farmers, which appear paradoxical, even irrational given the state of knowledge regarding the consequences of overgrazing. The phenomenon however appears inextricably linked with the objectives that farmers hold. In this research those objectives were elicited first and from their ranking two, 'asset value of cattle (representing cattle ownership and 'present value of economic returns', were chosen to develop an original bi-criteria Compromise Programming model to test various hypotheses postulated to explain the overgrazing behaviour. As part of the model a pasture productivity index is derived to estimate the pasture recovery cost. Different scenarios based on farmers' attitudes towards overgrazing, pasture costs and capital availability were analysed. The results of the model runs show that benefits from holding more cattle can outweigh the increased pasture recovery and maintenance costs. This result undermines the hypothesis that farmers practise overgrazing because they are unaware or uncaring caring about overgrazing costs. An appropriate approach to the problem of pasture degradation requires information on the economics,and its interplay with farmers' objectives, for a wide range of pasture recovery and maintenance methods. Seen within the context of farmers' objectives, some level of overgrazing appears rational. Advocacy of the simple 'no overgrazing' rule is an insufficient strategy to maintain the long-term sustainability of the beef production systems in Central Brazil. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
In financial decision-making, a number of mathematical models have been developed for financial management in construction. However, optimizing both qualitative and quantitative factors and the semi-structured nature of construction finance optimization problems are key challenges in solving construction finance decisions. The selection of funding schemes by a modified construction loan acquisition model is solved by an adaptive genetic algorithm (AGA) approach. The basic objectives of the model are to optimize the loan and to minimize the interest payments for all projects. Multiple projects being undertaken by a medium-size construction firm in Hong Kong were used as a real case study to demonstrate the application of the model to the borrowing decision problems. A compromise monthly borrowing schedule was finally achieved. The results indicate that Small and Medium Enterprise (SME) Loan Guarantee Scheme (SGS) was first identified as the source of external financing. Selection of sources of funding can then be made to avoid the possibility of financial problems in the firm by classifying qualitative factors into external, interactive and internal types and taking additional qualitative factors including sovereignty, credit ability and networking into consideration. Thus a more accurate, objective and reliable borrowing decision can be provided for the decision-maker to analyse the financial options.
Resumo:
A common problem in many data based modelling algorithms such as associative memory networks is the problem of the curse of dimensionality. In this paper, a new two-stage neurofuzzy system design and construction algorithm (NeuDeC) for nonlinear dynamical processes is introduced to effectively tackle this problem. A new simple preprocessing method is initially derived and applied to reduce the rule base, followed by a fine model detection process based on the reduced rule set by using forward orthogonal least squares model structure detection. In both stages, new A-optimality experimental design-based criteria we used. In the preprocessing stage, a lower bound of the A-optimality design criterion is derived and applied as a subset selection metric, but in the later stage, the A-optimality design criterion is incorporated into a new composite cost function that minimises model prediction error as well as penalises the model parameter variance. The utilisation of NeuDeC leads to unbiased model parameters with low parameter variance and the additional benefit of a parsimonious model structure. Numerical examples are included to demonstrate the effectiveness of this new modelling approach for high dimensional inputs.
Resumo:
This article describes a case study involving information technology managers and their new programmer recruitment policy, but the primary interest is methodological. The processes of issue generation and selection and model conceptualization are described. Early use of “magnetic hexagons” allowed the generation of a range of issues, most of which would not have emerged if system dynamics elicitation techniques had been employed. With the selection of a specific issue, flow diagraming was used to conceptualize a model, computer implementation and scenario generation following naturally. Observations are made on the processes of system dynamics modeling, particularly on the need to employ general techniques of knowledge elicitation in the early stages of interventions. It is proposed that flexible approaches should be used to generate, select, and study the issues, since these reduce any biasing of the elicitation toward system dynamics problems and also allow the participants to take up the most appropriate problem- structuring approach.
Resumo:
The purpose of this study was to specify a set of attributes, identified as important precursors to coach selection. Executive coaching has grown exponentially, but there have been few studies as to the efficacy of coaching, including the factors that influence a manager's choice of coach. This study sought to identify these factors. The 45-item, online survey produced 267 useable responses. Results of the principal component analysis suggested a five-factor solution, with women showing a statistically significant preference over men for coaches who have the Ability to Develop Critical Thinking and Action, the Ability to Forge the Coaching Partnership and Coach Experience and Qualifications. The impact of coachee age was not significant in selecting executive coaches. The findings show a statistically significant relationship between coach attributes and the intention to continue with coaching. The implications of these findings for the selection of coaches, and for the coaching profession are discussed.