35 resultados para Mixed diets


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of in vitro studies was, conducted to determine the effects of adding a commercial enzyme product on the hydrolysis and fermentation of cellulose, xylan, and a mixture (1:1 wt/wt) of both. The enzyme product (Liquicell 2500, Specialty Enzymes and Biochemicals, Fresno, CA) was derived from Trichoderma reesei and contained mainly xylanase and cellulase activities. Addition of enzyme (0.5, 2.55 and 5.1 muL/g of DM) in the absence of ruminal fluid increased (P < 0.001) the release of reducing sugars from xylan and the mixture after 20 h of incubation at 20degreesC. Incubations with ruminal fluid showed that enzyme (0.5 and 2.55 muL/g of DM) increased (P < 0.05) the initial (up to 6 h) xylanase, endoglucanase, and beta-D-glucosidase activities in the liquid fraction by an average of 85%. Xylanase and endoglucanase activities in the solid fraction also were increased (P < 0.05) by enzyme addition, indicating an increase in fibrolytic activity due to ruminal microbes. Gas production over 96 h of incubation was determined using a gas pressure measurement technique. Incremental levels of enzyme increased (P < 0.05) the rate of gas production of all substrates, suggesting that fermentation of cellulose and xylan was enzyme-limited. However, adding the enzyme at levels higher than 2.55 muL/g of DM failed to further increase the rate of gas production, indicating that the maximal level of stimulation was already achieved at lower enzyme concentrations. It was concluded that enzymes enhanced the fermentation of cellulose and xylan by a combination of pre- and postincubation effects (i.e., an increase in the release of reducing sugars during the pretreatment phase and an increase in the hydrolytic activity of the liquid and solid fractions of the ruminal fluid), which was reflected in a higher rate of fermentation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two commercial enzyme products, Depol 40 (D) and Liquicell 2500 (L), were characterised from a biochemical standpoint and their potential to improve rumen degradation of forages was evaluated in vitro. Enzyme activities were determined at pH 5.5 and 39 degreesC. Analysis of the enzyme activities indicated that L contained higher xylanase and endoglucanase, but lower exoglucanase, pectinase and alpha-amylase activities than D. The Reading Pressure Technique (RPT) was used to investigate the effect of enzyme addition on the in vitro gas production (GP) and organic matter degradation (OMD) of alfalfa (Medicago sativa L.) stems and leaves. A completely randomised design with factorial arrangement of treatments was used. Both alfalfa fractions were untreated or treated with each enzyme at four levels, 20 h before incubation with rumen fluid. Each level of enzyme provided similar amounts of filter paper (D1, L1), endoglucanase (D2, L2), alpha-L-arabinofuranosidase (D3, L3) and xylanase units (D4, L4) per gram forage DM. Enzymes increased the initial OMD in both fractions, with improvements of up to 15% in leaves (D4) and 8% in stems (L2) after 12 h incubation. All enzyme treatments increased the extent of degradation (96 h incubation) in the leaf fractions, but only L2 increased final OMD in the stems. Direct hydrolysis of forage fractions during the pre-treatment period did not fully account for the magnitude of the increases in OMD, suggesting that the increase in rate of degradation was achieved through a combined effect of direct enzyme hydrolysis and synergistic action between the exogenous (applied) and endogenous (rumen) enzymes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Grass-based diets are of increasing social-economic importance in dairy cattle farming, but their low supply of glucogenic nutrients may limit the production of milk. Current evaluation systems that assess the energy supply and requirements are based on metabolisable energy (ME) or net energy (NE). These systems do not consider the characteristics of the energy delivering nutrients. In contrast, mechanistic models take into account the site of digestion, the type of nutrient absorbed and the type of nutrient required for production of milk constituents, and may therefore give a better prediction of supply and requirement of nutrients. The objective of the present study is to compare the ability of three energy evaluation systems, viz. the Dutch NE system, the agricultural and food research council (AFRC) ME system, and the feed into milk (FIM) ME system, and of a mechanistic model based on Dijkstra et al. [Simulation of digestion in cattle fed sugar cane: prediction of nutrient supply for milk production with locally available supplements. J. Agric. Sci., Cambridge 127, 247-60] and Mills et al. [A mechanistic model of whole-tract digestion and methanogenesis in the lactating dairy cow: model development, evaluation and application. J. Anim. Sci. 79, 1584-97] to predict the feed value of grass-based diets for milk production. The dataset for evaluation consists of 41 treatments of grass-based diets (at least 0.75 g ryegrass/g diet on DM basis). For each model, the predicted energy or nutrient supply, based on observed intake, was compared with predicted requirement based on observed performance. Assessment of the error of energy or nutrient supply relative to requirement is made by calculation of mean square prediction error (MSPE) and by concordance correlation coefficient (CCC). All energy evaluation systems predicted energy requirement to be lower (6-11%) than energy supply. The root MSPE (expressed as a proportion of the supply) was lowest for the mechanistic model (0.061), followed by the Dutch NE system (0.082), FIM ME system (0.097) and AFRCME system(0.118). For the energy evaluation systems, the error due to overall bias of prediction dominated the MSPE, whereas for the mechanistic model, proportionally 0.76 of MSPE was due to random variation. CCC analysis confirmed the higher accuracy and precision of the mechanistic model compared with energy evaluation systems. The error of prediction was positively related to grass protein content for the Dutch NE system, and was also positively related to grass DMI level for all models. In conclusion, current energy evaluation systems overestimate energy supply relative to energy requirement on grass-based diets for dairy cattle. The mechanistic model predicted glucogenic nutrients to limit performance of dairy cattle on grass-based diets, and proved to be more accurate and precise than the energy systems. The mechanistic model could be improved by allowing glucose maintenance and utilization requirements parameters to be variable. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experiment was carried out to establish the effect on the growth of pigs of including blood meal or lysine in diets containing gossypol from cottenseed cake. Forty Landrace x Large White pigs (20 of each sex) were randomly allocated to 5 treatments of 8 pigs each in a 2x2 factorial design with two levels of lysine or two levels of blood meal in the diets plus a control diet. The pigs were fed different diets and slaughtered at 75.0+/-2.0 kg live weight for carcase analysis. Supplementing the diets with blood meal resulted in higher live weight gains (p<0.001) and improved feed conversion ratios (p<0.001) than supplementing with lysine. Pigs fed the higher level of cottonseed cake showed a significant (p<0.001) depression in live weight gain and feed conversion ratio compared to those fed a low level of the cake. There was no significant difference (p>0.05) in intake in the pigs fed diets with cottonseed cake including blood meal or synthetic lysine. The kidney and liver weights of the pigs fed the diets with a higher level of cottonseed cake were significantly greater (p<0.001) than in those fed the lower level, but when the diets containing cottonseed cake were supplemented with blood meal or lysine at the same level there was no significant difference (p>0.05) in the weights of these organs. Lysine or other factors derived from blood meal appear to be more efficient than synthetic lysine in reducing the adverse effects of gossypol.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Inclusion of rapeseed feeds in dairy cow diets has the potential to reduce milk fat saturated fatty acid (SFA) and increase cis-monounsaturated fatty acid (cis-MUFA) content but effectiveness may depend on the form in which the rapeseed is presented. Four mid-lactation Holstein dairy cows were allocated to four maize silage-based dietary treatments according to a 4 x 4 Latin Square design, with 28-day experimental periods. Treatments consisted of a control diet (C containing 49 g/kg dry matter (DM) of calcium salts of palm oil distillate (CPO), or 49 g/kg DM of oil supplied as whole rapeseeds (WR), rapeseeds milled with wheat (MR) or rapeseed oil (RO). Replacing CPO with rapeseed feeds had no effect (P > 0.05) on milk fat and protein content, while milk yields were higher (P < 0.05) for RO and MR compared with WR (37.1, 38.1 and 34.3 kg/day, respectively). Substituting CPO with RO or MR reduced (P < 0.05) milk fat total SFA content (69.6, 55.6, 71.7 and 61.5 g/100g fatty acids for C, RO, WR and MR, respectively) and enhanced (P < 0.05) milk cis-9 18:1 MUFA concentrations (corresponding values 18.6, 24.3, 17.0 and 23.0 g/100g fatty acids) compared with C and WR. Treatments RO and MR also increased (P < 0.05) milk trans-MUFA content (4.4, 6.8, 10.5 g/100g fatty acids, C MR and RO, respectively). A lack of significant changes in milk fat composition when replacing CPO with WR suggests limited bioavailability of fatty acids in intact rapeseeds. In conclusion, replacing a commercial palm oil-based fat supplement in the diet with milled rapeseeds or rapeseed oil represented an effective strategy to alter milk fatty acid composition with the potential to improve human health. Inclusion of processed rapeseeds offered a good compromise for reducing milk SFA and increasing cis-MUFA, whilst minimising milk trans-MUFA and negative effects on animal performance.