109 resultados para Minimum Mean Square Error of Intensity Distribution
Resumo:
Progress in functional neuroimaging of the brain increasingly relies on the integration of data from complementary imaging modalities in order to improve spatiotemporal resolution and interpretability. However, the usefulness of merely statistical combinations is limited, since neural signal sources differ between modalities and are related non-trivially. We demonstrate here that a mean field model of brain activity can simultaneously predict EEG and fMRI BOLD with proper signal generation and expression. Simulations are shown using a realistic head model based on structural MRI, which includes both dense short-range background connectivity and long-range specific connectivity between brain regions. The distribution of modeled neural masses is comparable to the spatial resolution of fMRI BOLD, and the temporal resolution of the modeled dynamics, importantly including activity conduction, matches the fastest known EEG phenomena. The creation of a cortical mean field model with anatomically sound geometry, extensive connectivity, and proper signal expression is an important first step towards the model-based integration of multimodal neuroimages.
Resumo:
A primitive equation model is used to study the sensitivity of baroclinic wave life cycles to the initial latitude-height distribution of humidity. Diabatic heating is parametrized only as a consequence of condensation in regions of large-scale ascent. Experiments are performed in which the initial relative humidity is a simple function of model level, and in some cases latitude bands are specified which are initially relatively dry. It is found that the presence of moisture can either increase or decrease the peak eddy kinetic energy of the developing wave, depending on the initial moisture distribution. A relative abundance of moisture at mid-latitudes tends to weaken the wave, while a relative abundance at low latitudes tends to strengthen it. This sensitivity exists because competing processes are at work. These processes are described in terms of energy box diagnostics. The most realistic case lies on the cusp of this sensitivity. Further physical parametrizations are then added, including surface fluxes and upright moist convection. These have the effect of increasing wave amplitude, but the sensitivity to initial conditions of relative humidity remains. Finally, 'control' and 'doubled CO2' life cycles are performed, with initial conditions taken from the time-mean zonal-mean output of equilibrium GCM experiments. The attenuation of the wave resulting from reduced baroclinicity is more pronounced than any effect due to changes in initial moisture.
Resumo:
We systematically compare the performance of ETKF-4DVAR, 4DVAR-BEN and 4DENVAR with respect to two traditional methods (4DVAR and ETKF) and an ensemble transform Kalman smoother (ETKS) on the Lorenz 1963 model. We specifically investigated this performance with increasing nonlinearity and using a quasi-static variational assimilation algorithm as a comparison. Using the analysis root mean square error (RMSE) as a metric, these methods have been compared considering (1) assimilation window length and observation interval size and (2) ensemble size to investigate the influence of hybrid background error covariance matrices and nonlinearity on the performance of the methods. For short assimilation windows with close to linear dynamics, it has been shown that all hybrid methods show an improvement in RMSE compared to the traditional methods. For long assimilation window lengths in which nonlinear dynamics are substantial, the variational framework can have diffculties fnding the global minimum of the cost function, so we explore a quasi-static variational assimilation (QSVA) framework. Of the hybrid methods, it is seen that under certain parameters, hybrid methods which do not use a climatological background error covariance do not need QSVA to perform accurately. Generally, results show that the ETKS and hybrid methods that do not use a climatological background error covariance matrix with QSVA outperform all other methods due to the full flow dependency of the background error covariance matrix which also allows for the most nonlinearity.
Resumo:
Current methods for initialising coupled atmosphere-ocean forecasts often rely on the use of separate atmosphere and ocean analyses, the combination of which can leave the coupled system imbalanced at the beginning of the forecast, potentially accelerating the development of errors. Using a series of experiments with the European Centre for Medium-range Weather Forecasts coupled system, the magnitude and extent of these so-called initialisation shocks is quantified, and their impact on forecast skill measured. It is found that forecasts initialised by separate ocean and atmospheric analyses do exhibit initialisation shocks in lower atmospheric temperature, when compared to forecasts initialised using a coupled data assimilation method. These shocks result in as much as a doubling of root-mean-square error on the first day of the forecast in some regions, and in increases that are sustained for the duration of the 10-day forecasts performed here. However, the impacts of this choice of initialisation on forecast skill, assessed using independent datasets, were found to be negligible, at least over the limited period studied. Larger initialisation shocks are found to follow a change in either the atmospheric or ocean model component between the analysis and forecast phases: changes in the ocean component can lead to sea surface temperature shocks of more than 0.5K in some equatorial regions during the first day of the forecast. Implications for the development of coupled forecast systems, particularly with respect to coupled data assimilation methods, are discussed.
Resumo:
Active remote sensing of marine boundary-layer clouds is challenging as drizzle drops often dominate the observed radar reflectivity. We present a new method to simultaneously retrieve cloud and drizzle vertical profiles in drizzling boundary-layer clouds using surface-based observations of radar reflectivity, lidar attenuated backscatter, and zenith radiances under conditions when precipitation does not reach the surface. Specifically, the vertical structure of droplet size and water content of both cloud and drizzle is characterised throughout the cloud. An ensemble optimal estimation approach provides full error statistics given the uncertainty in the observations. To evaluate the new method, we first perform retrievals using synthetic measurements from large-eddy simulation snapshots of cumulus under stratocumulus, where cloud water path is retrieved with an error of 31 g m−2 . The method also performs well in non-drizzling clouds where no assumption of the cloud profile is required. We then apply the method to observations of marine stratocumulus obtained during the Atmospheric Radiation Measurement MAGIC deployment in the Northeast Pacific. Here, retrieved cloud water path agrees well with independent three-channel microwave radiometer retrievals, with a root mean square difference of 10–20 g m−2.
Resumo:
Imagery registration is a fundamental step, which greatly affects later processes in image mosaic, multi-spectral image fusion, digital surface modelling, etc., where the final solution needs blending of pixel information from more than one images. It is highly desired to find a way to identify registration regions among input stereo image pairs with high accuracy, particularly in remote sensing applications in which ground control points (GCPs) are not always available, such as in selecting a landing zone on an outer space planet. In this paper, a framework for localization in image registration is developed. It strengthened the local registration accuracy from two aspects: less reprojection error and better feature point distribution. Affine scale-invariant feature transform (ASIFT) was used for acquiring feature points and correspondences on the input images. Then, a homography matrix was estimated as the transformation model by an improved random sample consensus (IM-RANSAC) algorithm. In order to identify a registration region with a better spatial distribution of feature points, the Euclidean distance between the feature points is applied (named the S criterion). Finally, the parameters of the homography matrix were optimized by the Levenberg–Marquardt (LM) algorithm with selective feature points from the chosen registration region. In the experiment section, the Chang’E-2 satellite remote sensing imagery was used for evaluating the performance of the proposed method. The experiment result demonstrates that the proposed method can automatically locate a specific region with high registration accuracy between input images by achieving lower root mean square error (RMSE) and better distribution of feature points.
Resumo:
The Arctic is an important region in the study of climate change, but monitoring surface temperatures in this region is challenging, particularly in areas covered by sea ice. Here in situ, satellite and reanalysis data were utilised to investigate whether global warming over recent decades could be better estimated by changing the way the Arctic is treated in calculating global mean temperature. The degree of difference arising from using five different techniques, based on existing temperature anomaly dataset techniques, to estimate Arctic SAT anomalies over land and sea ice were investigated using reanalysis data as a testbed. Techniques which interpolated anomalies were found to result in smaller errors than non-interpolating techniques. Kriging techniques provided the smallest errors in anomaly estimates. Similar accuracies were found for anomalies estimated from in situ meteorological station SAT records using a kriging technique. Whether additional data sources, which are not currently utilised in temperature anomaly datasets, would improve estimates of Arctic surface air temperature anomalies was investigated within the reanalysis testbed and using in situ data. For the reanalysis study, the additional input anomalies were reanalysis data sampled at certain supplementary data source locations over Arctic land and sea ice areas. For the in situ data study, the additional input anomalies over sea ice were surface temperature anomalies derived from the Advanced Very High Resolution Radiometer satellite instruments. The use of additional data sources, particularly those located in the Arctic Ocean over sea ice or on islands in sparsely observed regions, can lead to substantial improvements in the accuracy of estimated anomalies. Decreases in Root Mean Square Error can be up to 0.2K for Arctic-average anomalies and more than 1K for spatially resolved anomalies. Further improvements in accuracy may be accomplished through the use of other data sources.
Resumo:
Sea-level rise (SLR) from global warming may have severe consequences for coastal cities, particularly when combined with predicted increases in the strength of tidal surges. Predicting the regional impact of SLR flooding is strongly dependent on the modelling approach and accuracy of topographic data. Here, the areas under risk of sea water flooding for London boroughs were quantified based on the projected SLR scenarios reported in Intergovernmental Panel on Climate Change (IPCC) fifth assessment report (AR5) and UK climatic projections 2009 (UKCP09) using a tidally-adjusted bathtub modelling approach. Medium- to very high-resolution digital elevation models (DEMs) are used to evaluate inundation extents as well as uncertainties. Depending on the SLR scenario and DEMs used, it is estimated that 3%–8% of the area of Greater London could be inundated by 2100. The boroughs with the largest areas at risk of flooding are Newham, Southwark, and Greenwich. The differences in inundation areas estimated from a digital terrain model and a digital surface model are much greater than the root mean square error differences observed between the two data types, which may be attributed to processing levels. Flood models from SRTM data underestimate the inundation extent, so their results may not be reliable for constructing flood risk maps. This analysis provides a broad-scale estimate of the potential consequences of SLR and uncertainties in the DEM-based bathtub type flood inundation modelling for London boroughs.
Resumo:
In this paper, we develop a novel constrained recursive least squares algorithm for adaptively combining a set of given multiple models. With data available in an online fashion, the linear combination coefficients of submodels are adapted via the proposed algorithm.We propose to minimize the mean square error with a forgetting factor, and apply the sum to one constraint to the combination parameters. Moreover an l1-norm constraint to the combination parameters is also applied with the aim to achieve sparsity of multiple models so that only a subset of models may be selected into the final model. Then a weighted l2-norm is applied as an approximation to the l1-norm term. As such at each time step, a closed solution of the model combination parameters is available. The contribution of this paper is to derive the proposed constrained recursive least squares algorithm that is computational efficient by exploiting matrix theory. The effectiveness of the approach has been demonstrated using both simulated and real time series examples.
Resumo:
We demonstrate that it is possible to link multi-chain molecular dynamics simulations with the tube model using a single chain slip-links model as a bridge. This hierarchical approach allows significant speed up of simulations, permitting us to span the time scales relevant for a comparison with the tube theory. Fitting the mean-square displacement of individual monomers in molecular dynamics simulations with the slip-spring model, we show that it is possible to predict the stress relaxation. Then, we analyze the stress relaxation from slip-spring simulations in the framework of the tube theory. In the absence of constraint release, we establish that the relaxation modulus can be decomposed as the sum of contributions from fast and longitudinal Rouse modes, and tube survival. Finally, we discuss some open questions regarding possible future directions that could be profitable in rendering the tube model quantitative, even for mildly entangled polymers
Resumo:
In the Radiative Atmospheric Divergence Using ARM Mobile Facility GERB and AMMA Stations (RADAGAST) project we calculate the divergence of radiative flux across the atmosphere by comparing fluxes measured at each end of an atmospheric column above Niamey, in the African Sahel region. The combination of broadband flux measurements from geostationary orbit and the deployment for over 12 months of a comprehensive suite of active and passive instrumentation at the surface eliminates a number of sampling issues that could otherwise affect divergence calculations of this sort. However, one sampling issue that challenges the project is the fact that the surface flux data are essentially measurements made at a point, while the top-of-atmosphere values are taken over a solid angle that corresponds to an area at the surface of some 2500 km2. Variability of cloud cover and aerosol loading in the atmosphere mean that the downwelling fluxes, even when averaged over a day, will not be an exact match to the area-averaged value over that larger area, although we might expect that it is an unbiased estimate thereof. The heterogeneity of the surface, for example, fixed variations in albedo, further means that there is a likely systematic difference in the corresponding upwelling fluxes. In this paper we characterize and quantify this spatial sampling problem. We bound the root-mean-square error in the downwelling fluxes by exploiting a second set of surface flux measurements from a site that was run in parallel with the main deployment. The differences in the two sets of fluxes lead us to an upper bound to the sampling uncertainty, and their correlation leads to another which is probably optimistic as it requires certain other conditions to be met. For the upwelling fluxes we use data products from a number of satellite instruments to characterize the relevant heterogeneities and so estimate the systematic effects that arise from the flux measurements having to be taken at a single point. The sampling uncertainties vary with the season, being higher during the monsoon period. We find that the sampling errors for the daily average flux are small for the shortwave irradiance, generally less than 5 W m−2, under relatively clear skies, but these increase to about 10 W m−2 during the monsoon. For the upwelling fluxes, again taking daily averages, systematic errors are of order 10 W m−2 as a result of albedo variability. The uncertainty on the longwave component of the surface radiation budget is smaller than that on the shortwave component, in all conditions, but a bias of 4 W m−2 is calculated to exist in the surface leaving longwave flux.
Resumo:
Previous assessments of the impacts of climate change on heat-related mortality use the "delta method" to create temperature projection time series that are applied to temperature-mortality models to estimate future mortality impacts. The delta method means that climate model bias in the modelled present does not influence the temperature projection time series and impacts. However, the delta method assumes that climate change will result only in a change in the mean temperature but there is evidence that there will also be changes in the variability of temperature with climate change. The aim of this paper is to demonstrate the importance of considering changes in temperature variability with climate change in impacts assessments of future heat-related mortality. We investigate future heatrelated mortality impacts in six cities (Boston, Budapest, Dallas, Lisbon, London and Sydney) by applying temperature projections from the UK Meteorological Office HadCM3 climate model to the temperature-mortality models constructed and validated in Part 1. We investigate the impacts for four cases based on various combinations of mean and variability changes in temperature with climate change. The results demonstrate that higher mortality is attributed to increases in the mean and variability of temperature with climate change rather than with the change in mean temperature alone. This has implications for interpreting existing impacts estimates that have used the delta method. We present a novel method for the creation of temperature projection time series that includes changes in the mean and variability of temperature with climate change and is not influenced by climate model bias in the modelled present. The method should be useful for future impacts assessments. Few studies consider the implications that the limitations of the climate model may have on the heatrelated mortality impacts. Here, we demonstrate the importance of considering this by conducting an evaluation of the daily and extreme temperatures from HadCM3, which demonstrates that the estimates of future heat-related mortality for Dallas and Lisbon may be overestimated due to positive climate model bias. Likewise, estimates for Boston and London may be underestimated due to negative climate model bias. Finally, we briefly consider uncertainties in the impacts associated with greenhouse gas emissions and acclimatisation. The uncertainties in the mortality impacts due to different emissions scenarios of greenhouse gases in the future varied considerably by location. Allowing for acclimatisation to an extra 2°C in mean temperatures reduced future heat-related mortality by approximately half that of no acclimatisation in each city.
Resumo:
Constant-α force-free magnetic flux rope models have proven to be a valuable first step toward understanding the global context of in situ observations of magnetic clouds. However, cylindrical symmetry is necessarily assumed when using such models, and it is apparent from both observations and modeling that magnetic clouds have highly noncircular cross sections. A number of approaches have been adopted to relax the circular cross section approximation: frequently, the cross-sectional shape is allowed to take an arbitrarily chosen shape (usually elliptical), increasing the number of free parameters that are fit between data and model. While a better “fit” may be achieved in terms of reducing the mean square error between the model and observed magnetic field time series, it is not always clear that this translates to a more accurate reconstruction of the global structure of the magnetic cloud. We develop a new, noncircular cross section flux rope model that is constrained by observations of CMEs/ICMEs and knowledge of the physical processes acting on the magnetic cloud: The magnetic cloud is assumed to initially take the form of a force-free flux rope in the low corona but to be subsequently deformed by a combination of axis-centered self-expansion and heliocentric radial expansion. The resulting analytical solution is validated by fitting to artificial time series produced by numerical MHD simulations of magnetic clouds and shown to accurately reproduce the global structure.
Resumo:
High resolution vibration-rotation spectra of 13C2H2 were recorded in a number of regions from 2000 to 5200 cm−1 at Doppler or pressure limited resolution. In these spectral ranges cold and hot bands involving the bending-stretching combination levels have been analyzed up to high J values. Anharmonic quartic resonances for the combination levels ν1 + mν4 + nν5, ν2 + mν4 + (n + 2) ν5 and ν3 + (m − 1) ν4 + (n + 1) ν5 have been studied, and the l-type resonances within each polyad have been explicitly taken into account in the analysis of the data. The least-squares refinement provides deperturbed values for band origins and rotational constants, obtained by fitting rotation lines only up to J ≈ 20 with root mean square errors of ≈ 0.0003 cm−1. The band origins allowed us to determine a number of the anharmonicity constants xij0.