34 resultados para Middle years education
Resumo:
Fossil pollen, ancient lake sediments and archaeological evidence from Africa indicate that the Sahel and Sahara regions were considerably wetter than today during the early to middle Holocene period, about 12,000 to 5,000 years ago1–4. Vegetation associated with the modern Sahara/Sahel boundary was about 5° farther north, and there were more and larger lakes between 15 and 30° N. Simulations with climate models have shown that these wetter conditions were probably caused by changes in Earth's orbital parameters that increased the amplitude of the seasonal cycle of solar radiation in the Northern Hemisphere, enhanced the land-ocean temperature contrast, and thereby strengthened the African summer monsoon5–7. However, these simulations underestimated the consequent monsoon enhancement as inferred from palaeorecords4. Here we use a climate model to show that changes in vegetation and soil may have increased the climate response to orbital forcing. We find that replacing today's orbital forcing with that of the mid-Holocene increases summer precipitation by 12% between 15 and 22° N. Replacing desert with grassland, and desert soil with more loamy soil, further enhances the summer precipitation (by 6 and 10% respectively), giving a total precipitation increase of 28%. When the simulated climate changes are applied to a biome model, vegetation becomes established north of the current Sahara/Sahel boundary, thereby shrinking the area of the Sahara by 11% owing to orbital forcing alone, and by 20% owing to the combined influence of orbital forcing and the prescribed vegetation and soil changes. The inclusion of the vegetation and soil feedbacks thus brings the model simulations and palaeovegetation observations into closer agreement.
Resumo:
During the last few years Enterprise Architecture has received increasing attention among industry and academia. Enterprise Architecture (EA) can be defined as (i) a formal description of the current and future state(s) of an organisation, and (ii) a managed change between these states to meet organisation’s stakeholders’ goals and to create value to the organisation. By adopting EA, organisations may gain a number of benefits such as better decision making, increased revenues and cost reductions, and alignment of business and IT. To increase the performance of public sector operations, and to improve public services and their availability, the Finnish Parliament has ratified the Act on Information Management Governance in Public Administration in 2011. The Act mandates public sector organisations to start adopting EA by 2014, including Higher Education Institutions (HEIs). Despite the benefits of EA and the Act, EA adoption level and maturity in Finnish HEIs are low. This is partly caused by the fact that EA adoption has been found to be difficult. Thus there is a need for a solution to help organisations to adopt EA successfully. This thesis follows Design Science (DS) approach to improve traditional EA adoption method in order to increase the likelihood of successful adoption. First a model is developed to explain the change resistance during EA adoption. To find out problems associated with EA adoption, an EA-pilot conducted in 2010 among 12 Finnish HEIs was analysed using the model. It was found that most of the problems were caused by misunderstood EA concepts, attitudes, and lack of skills. The traditional EA adoption method does not pay attention to these. To overcome the limitations of the traditional EA adoption method, an improved EA Adoption Method (EAAM) is introduced. By following EAAM, organisations may increase the likelihood of successful EA adoption. EAAM helps in acquiring the mandate for EA adoption from top-management, which has been found to be crucial to success. It also helps in supporting individual and organisational learning, which has also found to be essential in successful adoption.
Resumo:
Horticultural knowledge and skills training have been with humankind for some 10,000 to 20,000 years. With permanent settlement and rising wealth and trade, horticulture products and services became a source of fresh food for daily consumption, and a source of plant material in developing a quality environment and lifestyle. The knowledge of horticulture and the skills of its practitioners have been demonstrated through the advancing civilizations in both eastern and western countries. With the rise of the Agricultural Revolutions in Great Britain, and more widely across Continental Europe in the 17th and 18th centuries, as well as the move towards colonisation and early migration to the New Worlds, many westernised countries established the early institutions that would provide education and training in agriculture and horticulture. Today many of these colleges and universities provide undergraduate, postgraduate and vocational and technical training that specifically targets horticulture and/or horticultural science with some research and teaching institutions also providing extension and advisory services to industry. The objective of this chapter is to describe the wider pedagogic and educational context in which those concerned with horticulture operate, the institutional structures that target horticulture and horticultural science education and training internationally; examine changing educational formats, especially distance education; and consider strategies for attracting and retaining young people in the delivery of world-class horticultural education. In this chapter we set the context by investigating the horticultural education and training options available, the constraints that prevent young people entering horticulture, and suggest strategies that would attract and retain these students. We suggest that effective strategies and partnerships be put in place by the institution, the government and most importantly the industry to provide for undergraduate and postgraduate education in horticulture and horticultural science; that educational and vocational training institutions, government, and industry need to work more effectively together to improve communication about horticulture and horticultural science in order to attract enrolments of more and talented students; and that the horticulture curriculum be continuously evaluated and revised so that it remains relevant to future challenges facing the industries of horticulture in the production, environmental and social spheres. These strategies can be used as a means to develop successful programs and case studies that would provide better information to high school career counsellors, improve the image of horticulture and encourage greater involvement from alumni and the industries in recruitment, provide opportunities to improve career aspirations, ensure improved levels of remuneration, and promote the social features of the profession and greater awareness and recognition of the profession in the wider community. A successful career in horticulture demands intellectual capacities which are capable of drawing knowledge from a wide field of basic sciences, economics and the humanities and integrating this into academic scholarship and practical technologies.
Resumo:
The study investigated early years teachers’ understanding and use of graphic symbols, defined as the visual representation(s) used to communicate one or more “linguistic” concepts, which can be used to facilitate science learning. The study was conducted in Cyprus where six early years teachers were observed and interviewed. The results indicate that the teachers had a good understanding of the role of symbols, but demonstrated a lack of understanding in regards to graphic symbols specifically. None of the teachers employed them in their observed science lesson, although some of them claimed that they did so. Findings suggest a gap in participants’ acquaintance with the terminology regarding different types of symbols and a lack of awareness about the use and availability of graphic symbols for the support of learning. There is a need to inform and train early years teachers about graphic symbols and their potential applications in supporting children’s learning.