35 resultados para Microcystins in rat plasma


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Somatostatin-receptor 1 (sst1) is an autoreceptor in the central nervous system that regulates the release of somatostatin. Sst1 is present intracellularly and at the cell surface. To investigate sst1 trafficking, rat sst1 tagged with epitope was expressed in rat insulinoma cells 1046-38 (RIN-1046-38) and tracked by antibody labeling. Confocal microscopic analysis revealed colocalization of intracellularly localized rat sst1-human simplex virus (HSV) with Rab5a-green fluorescent protein and Rab11a-green fluorescent protein, indicating the distribution of the receptor in endocytotic and recycling organelles. Somatostatin-14 induced internalization of cell surface receptors and reduction of binding sites on the cell surface. It also stimulated recruitment of intracellular sst1-HSV to the plasma membrane. Confocal analysis of sst1-HSV revealed that the receptor was initially transported within superficial vesicles. Prolonged stimulation of the cells with the peptide agonist induced intracellular accumulation of somatostatin-14. Because the number of cell surface binding sites did not change during prolonged stimulation, somatostatin-14 was internalized through a dynamic process of continuous endocytosis, recycling, and recruitment of intracellularly present sst1-HSV. Accumulated somatostatin-14 bypassed degradation via the endosomal-lysosomal route and was instead rapidly released as intact and biologically active somatostatin-14. Our results show for the first time that sst1 mediates a dynamic process of endocytosis, recycling, and re-endocytosis of its cognate ligand.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern neuroimaging techniques rely on neurovascular coupling to show regions of increased brain activation. However, little is known of the neurovascular coupling relationships that exist for inhibitory signals. To address this issue directly we developed a preparation to investigate the signal sources of one of these proposed inhibitory neurovascular signals, the negative blood oxygen level-dependent (BOLD) response (NBR), in rat somatosensory cortex. We found a reliable NBR measured in rat somatosensory cortex in response to unilateral electrical whisker stimulation, which was located in deeper cortical layers relative to the positive BOLD response. Separate optical measurements (two-dimensional optical imaging spectroscopy and laser Doppler flowmetry) revealed that the NBR was a result of decreased blood volume and flow and increased levels of deoxyhemoglobin. Neural activity in the NBR region, measured by multichannel electrodes, varied considerably as a function of cortical depth. There was a decrease in neuronal activity in deep cortical laminae. After cessation of whisker stimulation there was a large increase in neural activity above baseline. Both the decrease in neuronal activity and increase above baseline after stimulation cessation correlated well with the simultaneous measurement of blood flow suggesting that the NBR is related to decreases in neural activity in deep cortical layers. Interestingly, the magnitude of the neural decrease was largest in regions showing stimulus-evoked positive BOLD responses. Since a similar type of neural suppression in surround regions was associated with a negative BOLD signal, the increased levels of suppression in positive BOLD regions could importantly moderate the size of the observed BOLD response.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ca(2+) elevation is essential to platelet activation. STIM1 senses Ca(2+) in the endoplasmic reticulum and activates Orai channels allowing store-operated Ca(2+) entry (SOCE). STIM1 has also been reported to be present in the plasma membrane (PM) with its N-terminal region exposed to the outside medium but its role is not fully understood. We have examined the effects of the antibody GOK/STIM1, which recognises the N-terminal region of STIM1, on SOCE, agonist-stimulated Ca(2+) entry, surface exposure, in vitro thrombus formation and aggregation in human platelets. We also determined novel binding partners of STIM1 using proteomics. The dialysed GOK/STIM1 antibody failed to reduced thapsigargin- and agonist-mediated Ca(2+) entry in Fura2-labelled cells. Using flow cytometry we detect a portion of STIM1 to be surface-exposed. The dialysed GOK/STIM1 antibody reduced thrombus formation by whole blood on collagen-coated capillaries under flow and platelet aggregation induced by collagen. In immunoprecipitation experiments followed by proteomic analysis, STIM1 was found to extract a number of proteins including myosin, DOCK10, thrombospondin-1 and actin. These studies suggest that PM STIM1 may facilitate platelet activation by collagen through novel interactions at the plasma membrane while the essential Ca(2+)-sensing role of STIM1 is served by the protein in the ER.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Purpose. In rat middle cerebral arteries, endothelium-dependent hyperpolarization (EDH) is mediated by activation of calcium-activated potassium(KCa) channels specifically KCa2.3 and KCa3.1. Lipoxygenase (LOX) products function as endothelium-derived hyperpolarizing factors (EDHFs) in rabbit arteries by stimulating KCa2.3. We investigated if LOX products contribute to EDH in rat cerebral arteries. Methods. Arachidonic acid (AA) metabolites produced in middle cerebral arteries were measured using HPLC and LC/MS. Vascular tension and membrane potential responses to SLIGRL were simultaneously recorded using wire myography and intracellular microelectrodes. Results. SLIGRL, an agonist at PAR2 receptors, caused EDH that was inhibited by a combination of KCa2.3 and KCa3.1 blockade. Non-selective LOX-inhibition reduced EDH, whereas inhibition of 12-LOX had no effect. Soluble epoxide hydrolase (sEH) inhibition enhanced the KCa2.3 component of EDH. Following NO synthase (NOS) inhibition, the KCa2.3 component of EDH was absent. Using HPLC, middle cerebral arteries metabolized 14C-AA to 15- and 12-LOX products under control conditions. With NOS inhibition, there was little change in LOX metabolites, but increased F-type isoprostanes. 8-iso-PGF2α inhibited the KCa2.3 component of EDH. Conclusions. LOX metabolites mediate EDH in rat middle cerebral arteries. Inhibition of sEH increases the KCa2.3 component of EDH. Following NOS inhibition,loss of KCa2.3 function is independent of changes in LOX production or sEH inhibition but due to increased isoprostane production and subsequent stimulation of TP receptors. These findings have important implications in diseases associated with loss of NO signaling such as stroke; where inhibition of sEH and/or isoprostane formation may of benefit.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cardiac myocyte hypertrophy is associated with an increase in expression of immediate early genes (e.g. c-jun) via activation of pre-existing transcription factors. The activity of CREB transcription factor is regulated through phosphorylation of Ser-133 by one of several protein kinases (e.g. protein kinase A (PKA), p90 ribosomal S6 kinases (RSKs) and the related kinase, MSK1). A cell-permeable form of cAMP, hypertrophic agonists (endothelin-1 (ET-1), phenylephrine (PE)) and hyperosmotic shock all promoted phosphorylation of CREB(Ser-133) in rat neonatal cardiac myocytes. The response to endothelin-1 required the extracellular signal-regulated kinase cascade which stimulates both RSKs and MSK1. Phosphorylation of CREB(Ser-133) in response to ET-1 was not associated with any increase in DNA binding to a consensus cAMP-response element (CRE). The rat c-jun promoter contains elements which may bind either c-Jun/ATF2 or CREB/ATF1 dimers. Using extracts from rat cardiac myocytes, we identified at least two complexes which bind to the most proximal of these elements, one of which contained CREB and the other c-Jun. Thus, phosphorylation and activation of CREB in cardiac myocytes may be effected by a range of different stimuli to influence the expression of immediate early genes such as c-jun.