54 resultados para Method Evaluation
Resumo:
In any enterprise, decisions need be made during the life cycle of information about its management. This requires information evaluation to take place; a little-understood process. For evaluation support to be both effective and resource efficient, some sort of automatic or semi-automatic evaluation method would be invaluable. Such a method would require an understanding of the diversity of the contexts in which evaluation takes place so that evaluation support can have the necessary context-sensitivity. This paper identifies the dimensions influencing the information evaluation process and defines the elements that characterise them, thus providing the foundations for a context-sensitive evaluation framework.
Resumo:
Integration of natural ventilation and daylighting in a single installation would make both technologies more attractive. One method for the integration is the use of concentric light pipe and ventilation stack. By constructing the light pipe using dichroic materials, the infrared part of the solar radiation is allowed to be transmitted to the stack but the visible light is guided by the light pipe into a room. The heat gain to the interior can be reduced and the thermal stack effect strengthened. Work presented here involved the experimental and computational evaluation of dichroic materials for enhancing both natural stack ventilation and daylighting. The transmittance of a dichroic light pipe was found to be similar to that of a light pipe with a 95% specular reflectance. The infra-red radiation transmitted through the dichroic material into a passive stack was found to enhance the natural ventilation flow by up to 14%. The effect is greater in summer than in winter, which is highly desirable as there is often a lack of driving force for natural stack ventilation in summer.
Resumo:
In this paper, the statistical properties of tropical ice clouds (ice water content, visible extinction, effective radius, and total number concentration) derived from 3 yr of ground-based radar–lidar retrievals from the U.S. Department of Energy Atmospheric Radiation Measurement Climate Research Facility in Darwin, Australia, are compared with the same properties derived using the official CloudSat microphysical retrieval methods and from a simpler statistical method using radar reflectivity and air temperature. It is shown that the two official CloudSat microphysical products (2B-CWC-RO and 2B-CWC-RVOD) are statistically virtually identical. The comparison with the ground-based radar–lidar retrievals shows that all satellite methods produce ice water contents and extinctions in a much narrower range than the ground-based method and overestimate the mean vertical profiles of microphysical parameters below 10-km height by over a factor of 2. Better agreements are obtained above 10-km height. Ways to improve these estimates are suggested in this study. Effective radii retrievals from the standard CloudSat algorithms are characterized by a large positive bias of 8–12 μm. A sensitivity test shows that in response to such a bias the cloud longwave forcing is increased from 44.6 to 46.9 W m−2 (implying an error of about 5%), whereas the negative cloud shortwave forcing is increased from −81.6 to −82.8 W m−2. Further analysis reveals that these modest effects (although not insignificant) can be much larger for optically thick clouds. The statistical method using CloudSat reflectivities and air temperature was found to produce inaccurate mean vertical profiles and probability distribution functions of effective radius. This study also shows that the retrieval of the total number concentration needs to be improved in the official CloudSat microphysical methods prior to a quantitative use for the characterization of tropical ice clouds. Finally, the statistical relationship used to produce ice water content from extinction and air temperature obtained by the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) satellite is evaluated for tropical ice clouds. It is suggested that the CALIPSO ice water content retrieval is robust for tropical ice clouds, but that the temperature dependence of the statistical relationship used should be slightly refined to better reproduce the radar–lidar retrievals.
Resumo:
We explicitly tested for the first time the ‘environmental specificity’ of traditional 16S rRNAtargeted fluorescence in situ hybridization (FISH) through comparison of the bacterial diversity actually targeted in the environment with the diversity that should be exactly targeted (i.e. without mismatches) according to in silico analysis. To do this, we exploited advances in modern Flow Cytometry that enabled improved detection and therefore sorting of sub-micron-sized particles and used probe PSE1284 (designed to target Pseudomonads) applied to Lolium perenne rhizosphere soil as our test system. The 6-carboxyfluorescein (6-FAM)-PSE1284-hybridised population, defined as displaying enhanced green fluorescence in Flow Cytometry, represented 3.51±1.28% of the total detected population when corrected using a nonsense (NON-EUB338) probe control. Analysis of 16S rRNA gene libraries constructed from Fluorescence Activated Cell Sorted (FACS) -recovered fluorescent populations (n=3), revealed that 98.5% (Pseudomonas spp. comprised 68.7% and Burkholderia spp. 29.8%) of the total sorted population was specifically targeted as evidenced by the homology of the 16S rRNA sequences to the probe sequence. In silico evaluation of probe PSE1284 with the use of RDP-10 probeMatch justified the existence of Burkholderia spp. among the sorted cells. The lack of novelty in Pseudomonas spp. sequences uncovered was notable, probably reflecting the well-studied nature of this functionally important genus. To judge the diversity recorded within the FACS-sorted population, rarefaction and DGGE analysis were used to evaluate, respectively, the proportion of Pseudomonas diversity uncovered by the sequencing effort and the representativeness of the Nycodenz® method for the extraction of bacterial cells from soil.
Resumo:
Current methods for estimating event-related potentials (ERPs) assume stationarity of the signal. Empirical Mode Decomposition (EMD) is a data-driven decomposition technique that does not assume stationarity. We evaluated an EMD-based method for estimating the ERP. On simulated data, EMD substantially reduced background EEG while retaining the ERP. EMD-denoised single trials also estimated shape, amplitude, and latency of the ERP better than raw single trials. On experimental data, EMD-denoised trials revealed event-related differences between two conditions (condition A and B) more effectively than trials lowpass filtered at 40 Hz. EMD also revealed event-related differences on both condition A and condition B that were clearer and of longer duration than those revealed by low-pass filtering at 40 Hz. Thus, EMD-based denoising is a promising data-driven, nonstationary method for estimating ERPs and should be investigated further.
Resumo:
Specific traditional plate count method and real-time PCR systems based on SYBR Green I and TaqMan technologies using a specific primer pair and probe for amplification of iap-gene were used for quantitative assay of Listeria monocytogenes in seven decimal serial dilution series of nutrient broth and milk samples containing 1.58 to 1.58×107 cfu /ml and the real-time PCR methods were compared with the plate count method with respect to accuracy and sensitivity. In this study, the plate count method was performed using surface-plating of 0.1 ml of each sample on Palcam Agar. The lowest detectable level for this method was 1.58×10 cfu/ml for both nutrient broth and milk samples. Using purified DNA as a template for generation of standard curves, as few as four copies of the iap-gene could be detected per reaction with both real-time PCR assays, indicating that they were highly sensitive. When these real-time PCR assays were applied to quantification of L. monocytogenes in decimal serial dilution series of nutrient broth and milk samples, 3.16×10 to 3.16×105 copies per reaction (equals to 1.58×103 to 1.58×107 cfu/ml L. monocytogenes) were detectable. As logarithmic cycles, for Plate Count and both molecular assays, the quantitative results of the detectable steps were similar to the inoculation levels.
Resumo:
The aim of this study was to investigate the antimicrobial properties of fifteen selected strains belonging to the Lactobacillus, Bifidobacterium, Lactococcus, Streptococcus and Bacillus genera against Gram-positive and Gram-negative pathogenic bacteria. In vitro antibacterial activity was initially investigated by an agar spot method. Results from the agar spot test showed that most of the selected strains were able to produce active compounds on solid media with antagonistic properties against Salmonella Typhimurium, Escherichia coli, Enterococcus faecalis, Staphylococcus aureus and Clostridium difficile. These results were also confirmed when cell-free culture supernatants (CFCS) from the putative probiotics were used in an agar well diffusion assay. Neutralization of the culture supernatants with alkali reduced the antagonistic effects. These experiments are able to confirm the capacity of potential probiotics to inhibit selected pathogens. One of the main inhibitory mechanisms may result from the production of organic acids from glucose fermentation and consequent lowering of culture pH. This observation was confirmed when the profile of organic acids was analysed demonstrating that lactic and acetic acid were the principal end products of probiotic metabolism. Furthermore, the assessment of the haemolytic activity and the susceptibility of the strains to the most commonly used antimicrobials, considered as basic safety aspects, were also studied. The observed antimicrobial activity was mainly genus-specific, additionally significant differences could be observed among species.
Resumo:
We present a new approach to determine palaeotemperatures (mean annual surface temperatures) based on measurements of the liquid–vapour homogenisation temperature of fluid inclusions in stalagmites. The aim of this study is to explore the potential and the limitations of this new palaeothermometer and to develop a reliable methodology for routine applications in palaeoclimate research. Therefore, we have investigated recent fluid inclusions from the top part of actively growing stalagmites that have formed at temperatures close to the present-day cave air temperature. A precondition for measuring homogenisation temperatures of originally monophase inclusions is the nucleation of a vapour bubble by means of single ultra-short laser pulses. Based on the observed homogenisation temperatures (Th(obs)) and measurements of the vapour bubble diameter at a known temperature, we calculated stalagmite formation temperatures (Tf) by applying a thermodynamic model that takes into account the effect of surface tension on liquid–vapour homogenisation. Results from recent stalagmite samples demonstrate that calculated stalagmite formation temperatures match the present-day cave air temperature within ± 0.2 °C. To avoid artificially induced changes of the fluid density we defined specific demands on the selection, handling and preparation of the stalagmite samples. Application of the method is restricted to stalagmites that formed at cave temperatures greater than ~ 9–11 °C.
Resumo:
Developments in high-throughput genotyping provide an opportunity to explore the application of marker technology in distinctness, uniformity and stability (DUS) testing of new varieties. We have used a large set of molecular markers to assess the feasibility of a UPOV Model 2 approach: “Calibration of threshold levels for molecular characteristics against the minimum distance in traditional characteristics”. We have examined 431 winter and spring barley varieties, with data from UK DUS trials comprising 28 characteristics, together with genotype data from 3072 SNP markers. Inter varietal distances were calculated and we found higher correlations between molecular and morphological distances than have been previously reported. When varieties were grouped by kinship, phenotypic and genotypic distances of these groups correlated well. We estimated the minimum marker numbers required and showed there was a ceiling after which the correlations do not improve. To investigate the possibility of breaking through this ceiling, we attempted genomic prediction of phenotypes from genotypes and higher correlations were achieved. We tested distinctness decisions made using either morphological or genotypic distances and found poor correspondence between each method.
Resumo:
A new technique for objective classification of boundary layers is applied to ground-based vertically pointing Doppler lidar and sonic anemometer data. The observed boundary layer has been classified into nine different types based on those in the Met Office ‘Lock’ scheme, using vertical velocity variance and skewness, along with attenuated backscatter coefficient and surface sensible heat flux. This new probabilistic method has been applied to three years of data from Chilbolton Observatory in southern England and a climatology of boundary-layer type has been created. A clear diurnal cycle is present in all seasons. The most common boundary-layer type is stable with no cloud (30.0% of the dataset). The most common unstable type is well mixed with no cloud (15.4%). Decoupled stratocumulus is the third most common boundary-layer type (10.3%) and cumulus under stratocumulus occurs 1.0% of the time. The occurrence of stable boundary-layer types is much higher in the winter than the summer and boundary-layer types capped with cumulus cloud are more prevalent in the warm seasons. The most common diurnal evolution of boundary-layer types, occurring on 52 days of our three-year dataset, is that of no cloud with the stability changing from stable to unstable during daylight hours. These results are based on 16393 hours, 62.4% of the three-year dataset, of diagnosed boundary-layer type. This new method is ideally suited to long-term evaluation of boundary-layer type parametrisations in weather forecast and climate models.
Resumo:
Keyphrases are added to documents to help identify the areas of interest they contain. However, in a significant proportion of papers author selected keyphrases are not appropriate for the document they accompany: for instance, they can be classificatory rather than explanatory, or they are not updated when the focus of the paper changes. As such, automated methods for improving the use of keyphrases are needed, and various methods have been published. However, each method was evaluated using a different corpus, typically one relevant to the field of study of the method’s authors. This not only makes it difficult to incorporate the useful elements of algorithms in future work, but also makes comparing the results of each method inefficient and ineffective. This paper describes the work undertaken to compare five methods across a common baseline of corpora. The methods chosen were Term Frequency, Inverse Document Frequency, the C-Value, the NC-Value, and a Synonym based approach. These methods were analysed to evaluate performance and quality of results, and to provide a future benchmark. It is shown that Term Frequency and Inverse Document Frequency were the best algorithms, with the Synonym approach following them. Following these findings, a study was undertaken into the value of using human evaluators to judge the outputs. The Synonym method was compared to the original author keyphrases of the Reuters’ News Corpus. The findings show that authors of Reuters’ news articles provide good keyphrases but that more often than not they do not provide any keyphrases.
Resumo:
Nowadays the changing environment becomes the main challenge for most of organizations, since they have to evaluate proper policies to adapt to the environment. In this paper, we propose a multi-agent simulation method to evaluate policies based on complex adaptive system theory. Furthermore, we propose a semiotic EDA (Epistemic, Deontic, Axiological) agent model to simulate agent's behavior in the system by incorporating the social norms reflecting the policy. A case study is also provided to validate our approach. Our research present better adaptability and validity than the qualitative analysis and experiment approach and the semiotic agent model provides high creditability to simulate agents' behavior.
Resumo:
A new online method to analyse water isotopes of speleothem fluid inclusions using a wavelength scanned cavity ring down spectroscopy (WS-CRDS) instrument is presented. This novel technique allows us simultaneously to measure hydrogen and oxygen isotopes for a released aliquot of water. To do so, we designed a new simple line that allows the online water extraction and isotope analysis of speleothem samples. The specificity of the method lies in the fact that fluid inclusions release is made on a standard water background, which mainly improves the δ D robustness. To saturate the line, a peristaltic pump continuously injects standard water into the line that is permanently heated to 140 °C and flushed with dry nitrogen gas. This permits instantaneous and complete vaporisation of the standard water, resulting in an artificial water background with well-known δ D and δ18O values. The speleothem sample is placed in a copper tube, attached to the line, and after system stabilisation it is crushed using a simple hydraulic device to liberate speleothem fluid inclusions water. The released water is carried by the nitrogen/standard water gas stream directly to a Picarro L1102-i for isotope determination. To test the accuracy and reproducibility of the line and to measure standard water during speleothem measurements, a syringe injection unit was added to the line. Peak evaluation is done similarly as in gas chromatography to obtain &delta D; and δ18O isotopic compositions of measured water aliquots. Precision is better than 1.5 ‰ for δ D and 0.4 ‰ for δ18O for water measurements for an extended range (−210 to 0 ‰ for δ D and −27 to 0 ‰ for δ18O) primarily dependent on the amount of water released from speleothem fluid inclusions and secondarily on the isotopic composition of the sample. The results show that WS-CRDS technology is suitable for speleothem fluid inclusion measurements and gives results that are comparable to the isotope ratio mass spectrometry (IRMS) technique.
Resumo:
The decision to close airspace in the event of a volcanic eruption is based on hazard maps of predicted ash extent. These are produced using output from volcanic ash transport and dispersion (VATD)models. In this paper an objectivemetric to evaluate the spatial accuracy of VATD simulations relative to satellite retrievals of volcanic ash is presented. The 5 metric is based on the fractions skill score (FSS). Thismeasure of skill provides more information than traditional point-bypoint metrics, such as success index and Pearson correlation coefficient, as it takes into the account spatial scale overwhich skill is being assessed. The FSS determines the scale overwhich a simulation has skill and can differentiate between a "near miss" and a forecast that is badly misplaced. The 10 idealised scenarios presented show that even simulations with considerable displacement errors have useful skill when evaluated over neighbourhood scales of 200–700km2. This method could be used to compare forecasts produced by different VATDs or using different model parameters, assess the impact of assimilating satellite retrieved ash data and evaluate VATD forecasts over a long time period.