36 resultados para Metabolic disease
Resumo:
BACKGROUND: Low vitamin D status has been shown to be a risk factor for several metabolic traits such as obesity, diabetes and cardiovascular disease. The biological actions of 1, 25-dihydroxyvitamin D, are mediated through the vitamin D receptor (VDR), which heterodimerizes with retinoid X receptor, gamma (RXRG). Hence, we examined the potential interactions between the tagging polymorphisms in the VDR (22 tag SNPs) and RXRG (23 tag SNPs) genes on metabolic outcomes such as body mass index, waist circumference, waist-hip ratio (WHR), high- and low-density lipoprotein (LDL) cholesterols, serum triglycerides, systolic and diastolic blood pressures and glycated haemoglobin in the 1958 British Birth Cohort (1958BC, up to n = 5,231). We used Multifactor- dimensionality reduction (MDR) program as a non-parametric test to examine for potential interactions between the VDR and RXRG gene polymorphisms in the 1958BC. We used the data from Northern Finland Birth Cohort 1966 (NFBC66, up to n = 5,316) and Twins UK (up to n = 3,943) to replicate our initial findings from 1958BC. RESULTS: After Bonferroni correction, the joint-likelihood ratio test suggested interactions on serum triglycerides (4 SNP - SNP pairs), LDL cholesterol (2 SNP - SNP pairs) and WHR (1 SNP - SNP pair) in the 1958BC. MDR permutation model testing analysis showed one two-way and one three-way interaction to be statistically significant on serum triglycerides in the 1958BC. In meta-analysis of results from two replication cohorts (NFBC66 and Twins UK, total n = 8,183), none of the interactions remained after correction for multiple testing (Pinteraction >0.17). CONCLUSIONS: Our results did not provide strong evidence for interactions between allelic variations in VDR and RXRG genes on metabolic outcomes; however, further replication studies on large samples are needed to confirm our findings.
Resumo:
Postprandial glucose, together with related hyperinsulinemia and lipidaemia, has been implicated in the development of chronic metabolic diseases like obesity, type 2 diabetes mellitus (T2DM) and cardiovascular disease (CVD). In this review, available evidence is discussed on postprandial glucose in relation to body weight control, the development of oxidative stress, T2DM, and CVD and in maintaining optimal exercise and cognitive performance. There is mechanistic evidence linking postprandial glycaemia or glycaemic variability to the development of these conditions or in the impairment in cognitive and exercise performance. Nevertheless, postprandial glycaemia is interrelated with many other (risk) factors as well as to fasting glucose. In many studies, meal-related glycaemic response is not sufficiently characterized, or the methodology with respect to the description of food or meal composition, or the duration of the measurement of postprandial glycaemia is limited. It is evident that more randomized controlled dietary intervention trials using effective low vs. high glucose response diets are necessary in order to draw more definite conclusions on the role of postprandial glycaemia in relation to health and disease. Also of importance is the evaluation of the potential role of the time course of postprandial glycaemia.
Resumo:
An individual's metabolic phenotype, and ultimately health, is significantly influenced by complex interactions between their genes and the diet. Studying these associations and their downstream biochemical consequences has proven extremely challenging using traditional hypothesis-led strategies. Metabonomics, a systems biology approach, allows the global metabolic response of biological systems to stimuli to be characterised. Through the application of this approach to nutritional-based research, nutrimetabonomics, the biochemical response to dietary inputs is being investigated at greater levels of resolution. This has allowed novel insights to be gained regarding intricate diet-gene interactions and their consequences for health and disease. In this review, we present some of the latest research exploring how nutrimetabonomics can assist in the elucidation of novel biomarkers of dietary behaviour and provide new perspectives on diet-health relationships. The use of this approach to study the metabolic interplay between the gut microbiota and the host is also explored.
Resumo:
Probiotics are live microorganisms that confer a health benefit on the host when administered in appropriate amounts. Over 700 randomized, controlled, human studies have been conducted with probiotics thus far, with the results providing strong support for the use of probiotics in the clinical prevention or treatment of gastrointestinal tract disorders and metabolic syndrome. The present review is based on webinar presentations that were developed by the American Gastroenterological Association (AGA) in partnership with the International Scientific Association for Probiotics and Prebiotics (ISAPP) and the North American branch of the International Life Sciences Institute (ILSI North America). The presentations provided gastroenterologists and researchers with fundamental and current scientific information on the influence of gut microbiota on human health and disease, as well as clinical intervention strategies and practical guidelines for the use of probiotics and prebiotics.
Resumo:
Inositol levels, maintained by the biosynthetic enzyme inositol-3-phosphate synthase (Ino1), are altered in a range of disorders including bipolar disorder and Alzheimer's disease. To date, most inositol studies have focused on the molecular and cellular effects of inositol depletion without considering Ino1 levels. Here we employ a simple eukaryote, Dictyostelium, to demonstrate distinct effects of loss of Ino1 and inositol depletion. We show that loss of Ino1 results in inositol auxotrophy that can only be partially rescued by exogenous inositol. Removal of inositol supplementation from the ino1- mutant results in a rapid 56% reduction in inositol levels, triggering the induction of autophagy, reduced cytokinesis and substrate adhesion. Inositol depletion also caused a dramatic generalised decrease in phosphoinositide levels that was rescued by inositol supplementation. However, loss of Ino1 triggered broad metabolic changes consistent with the induction of a catabolic state that was not rescued by inositol supplementation. These data suggest a metabolic role for Ino1 independent of inositol biosynthesis. To characterise this role, an Ino1 binding partner containing SEL1L1 domains (Q54IX5) was identified with homology to mammalian macromolecular complex adaptor proteins. Our findings therefore identify a new role for Ino1, independent of inositol biosynthesis, with broad effects on cell metabolism.
Resumo:
The apoplast is the arena in which endophytic pathogens such as Pseudomonas syringae grow and interact with plant cells. Using metabolomic and ion analysis techniques, this study shows how the composition of Phaseolus vulgaris leaf apoplastic fluid changes during the first six hours of compatible and incompatible interactions with two strains of Pseudomonas syringae pv. phaseolicola (Pph) that differ in the presence of the genomic island PPHGI-1. Leaf inoculation with the avirulent island-carrying strain Pph 1302A elicited effector-triggered immunity (ETI) and resulted in specific changes in apoplast composition, including increases in conductivity, pH, citrate, γ-aminobutyrate (GABA) and K+, that are linked to the onset of plant defence responses. Other apoplastic changes, including increases in Ca2+, Fe2/3+ Mg2+, sucrose, β-cyanoalanine and several amino acids, occurred to a relatively similar extent in interactions with both Pph 1302A and the virulent, island-less strain Pph RJ3. Metabolic footprinting experiments established that Pph preferentially metabolizes malate, glucose and glutamate, but excludes certain other abundant apoplastic metabolites, including citrate and GABA, until preferred metabolites are depleted. These results demonstrate that Pph is well-adapted to the leaf apoplast metabolic environment and that loss of PPHGI-1 enables Pph to avoid changes in apoplast composition linked to plant defences.