52 resultados para Measurements models
Resumo:
In this paper we report on a study conducted using the Middle Atmospheric Nitrogen TRend Assessment (MANTRA) balloon measurements of stratospheric constituents and temperature and the Canadian Middle Atmosphere Model (CMAM). Three different kinds of data are used to assess the inter-consistency of the combined dataset: single profiles of long-lived species from MANTRA 1998, sparse climatologies from the ozonesonde measurements during the four MANTRA campaigns and from HALOE satellite measurements, and the CMAM climatology. In doing so, we evaluate the ability of the model to reproduce the measured fields and to thereby test our ability to describe mid-latitude summertime stratospheric processes. The MANTRA campaigns were conducted at Vanscoy, Saskatchewan, Canada (52◦ N, 107◦ W)in late August and early September of 1998, 2000, 2002 and 2004. During late summer at mid-latitudes, the stratosphere is close to photochemical control, providing an ideal scenario for the study reported here. From this analysis we find that: (1) reducing the value for the vertical diffusion coefficient in CMAM to a more physically reasonable value results in the model better reproducing the measured profiles of long-lived species; (2) the existence of compact correlations among the constituents, as expected from independent measurements in the literature and from models, confirms the self-consistency of the MANTRA measurements; and (3) the 1998 measurements show structures in the chemical species profiles that can be associated with transport, adding to the growing evidence that the summertime stratosphere can be much more disturbed than anticipated. The mechanisms responsible for such disturbances need to be understood in order to assess the representativeness of the measurements and to isolate longterm trends.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover, composition and 5 height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, 10 and are compared to scores based on the temporal or spatial mean value of the observations and a “random” model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), and the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global 15 vegetation models (DGVMs). SDBM reproduces observed CO2 seasonal cycles, but its simulation of independent measurements of net primary production (NPP) is too high. The two DGVMs show little difference for most benchmarks (including the interannual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified 20 several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change 25 impacts and feedbacks.
Resumo:
A detailed spectrally-resolved extraterrestrial solar spectrum (ESS) is important for line-by-line radiative transfer modeling in the near-infrared (near-IR). Very few observationally-based high-resolution ESS are available in this spectral region. Consequently the theoretically-calculated ESS by Kurucz has been widely adopted. We present the CAVIAR (Continuum Absorption at Visible and Infrared Wavelengths and its Atmospheric Relevance) ESS which is derived using the Langley technique applied to calibrated observations using a ground-based high-resolution Fourier transform spectrometer (FTS) in atmospheric windows from 2000–10000 cm-1 (1–5 μm). There is good agreement between the strengths and positions of solar lines between the CAVIAR and the satellite-based ACE-FTS (Atmospheric Chemistry Experiment-FTS) ESS, in the spectral region where they overlap, and good agreement with other ground-based FTS measurements in two near-IR windows. However there are significant differences in the structure between the CAVIAR ESS and spectra from semi-empirical models. In addition, we found a difference of up to 8 % in the absolute (and hence the wavelength-integrated) irradiance between the CAVIAR ESS and that of Thuillier et al., which was based on measurements from the Atmospheric Laboratory for Applications and Science satellite and other sources. In many spectral regions, this difference is significant, as the coverage factor k = 2 (or 95 % confidence limit) uncertainties in the two sets of observations do not overlap. Since the total solar irradiance is relatively well constrained, if the CAVIAR ESS is correct, then this would indicate an integrated “loss” of solar irradiance of about 30 W m-2 in the near-IR that would have to be compensated by an increase at other wavelengths.
Resumo:
Bright aurorae can be excited by the acceleration of electrons into the atmosphere in violation of ideal magnetohydrodynamics. Modelling studies predict that the accelerating electric potential consists of electric double layers at the boundaries of an acceleration region but observations suggest that particle acceleration occurs throughout this region. Using multi-spacecraft observations from Cluster we have examined two upward current regions on 14 December 2009. Our observations show that the potential difference below C4 and C3 changed by up to 1.7 kV between their respective crossings, which were separated by 150 s. The field-aligned current density observed by C3 was also larger than that observed by C4. The potential drop above C3 and C4 was approximately the same in both crossings. Using a novel technique of quantitatively comparing the electron spectra measured by Cluster 1 and 3, which were separated in altitude, we determine when these spacecraft made effectively magnetically conjugate observations and use these conjugate observations to determine the instantaneous distribution of the potential drop in the AAR. Our observations show that an average of 15% of the potential drop in the AAR was located between C1 at 6235 km and C3 at 4685 km altitude, with a maximum potential drop between the spacecraft of 500~V and that the majority of the potential drop was below C3. By assuming a spatial invariance along the length of the upward current region, we discuss these observations in terms of temporal changes and the vertical structure of the electrostatic potential drop and in the context of existing models and previous observations single- and multi-spacecraft observations.
Resumo:
The dependency of the blood oxygenation level dependent (BOLD) signal on underlying hemodynamics is not well understood. Building a forward biophysical model of this relationship is important for the quantitative estimation of the hemodynamic changes and neural activity underlying functional magnetic resonance imaging (fMRI) signals. We have developed a general model of the BOLD signal which can model both intra- and extravascular signals for an arbitrary tissue model across a wide range of imaging parameters. The model of the BOLD signal was instantiated as a look-up-table (LuT), and was verified against concurrent fMRI and optical imaging measurements of activation induced hemodynamics. Magn Reson Med, 2008. © 2008 Wiley-Liss, Inc.
Resumo:
Diurnal warming events between 5 and 7 K, spatially coherent over large areas (∼1000 km), are observed in independent satellite measurements of ocean surface temperature. The majority of the large events occurred in the extra-tropics. Given sufficient heating (from solar radiation), the location and magnitude of these events appears to be primarily determined by large-scale wind patterns. The amplitude of the measured diurnal heating scales inversely with the spatial resolution of the different sensors used in this study. These results indicate that predictions of peak diurnal warming using wind speeds with a 25 km spatial resolution available from satellite sensors and those with 50–100 km resolution from Numerical Weather Prediction models may have underestimated warming. Thus, the use of these winds in modeling diurnal effects will be limited in accuracy by both the temporal and spatial resolution of the wind fields.
Resumo:
The Richards equation has been widely used for simulating soil water movement. However, the take-up of agro-hydrological models using the basic theory of soil water flow for optimizing irrigation, fertilizer and pesticide practices is still low. This is partly due to the difficulties in obtaining accurate values for soil hydraulic properties at a field scale. Here, we use an inverse technique to deduce the effective soil hydraulic properties, based on measuring the changes in the distribution of soil water with depth in a fallow field over a long period, subject to natural rainfall and evaporation using a robust micro Genetic Algorithm. A new optimized function was constructed from the soil water contents at different depths, and the soil water at field capacity. The deduced soil water retention curve was approximately parallel but higher than that derived from published pedo-tranfer functions for a given soil pressure head. The water contents calculated from the deduced soil hydraulic properties were in good agreement with the measured values. The reliability of the deduced soil hydraulic properties was tested in reproducing data measured from an independent experiment on the same soil cropped with leek. The calculation of root water uptake took account for both soil water potential and root density distribution. Results show that the predictions of soil water contents at various depths agree fairly well with the measurements, indicating that the inverse analysis is an effective and reliable approach to estimate soil hydraulic properties, and thus permits the simulation of soil water dynamics in both cropped and fallow soils in the field accurately. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Atmospheric aerosols cause scattering and absorption of incoming solar radiation. Additional anthropogenic aerosols released into the atmosphere thus exert a direct radiative forcing on the climate system1. The degree of present-day aerosol forcing is estimated from global models that incorporate a representation of the aerosol cycles1–3. Although the models are compared and validated against observations, these estimates remain uncertain. Previous satellite measurements of the direct effect of aerosols contained limited information about aerosol type, and were confined to oceans only4,5. Here we use state-of-the-art satellitebased measurements of aerosols6–8 and surface wind speed9 to estimate the clear-sky direct radiative forcing for 2002, incorporating measurements over land and ocean. We use a Monte Carlo approach to account for uncertainties in aerosol measurements and in the algorithm used. Probability density functions obtained for the direct radiative forcing at the top of the atmosphere give a clear-sky, global, annual average of 21.9Wm22 with standard deviation, 60.3Wm22. These results suggest that present-day direct radiative forcing is stronger than present model estimates, implying future atmospheric warming greater than is presently predicted, as aerosol emissions continue to decline10.
Resumo:
Using a water balance modelling framework, this paper analyses the effects of urban design on the water balance, with a focus on evapotranspiration and storm water. First, two quite different urban water balance models are compared: Aquacycle which has been calibrated for a suburban catchment in Canberra, Australia, and the single-source urban evapotranspiration-interception scheme (SUES), an energy-based approach with a biophysically advanced representation of interception and evapotranspiration. A fair agreement between the two modelled estimates of evapotranspiration was significantly improved by allowing the vegetation cover (leaf area index, LAI) to vary seasonally, demonstrating the potential of SUES to quantify the links between water sensitive urban design and microclimates and the advantage of comparing the two modelling approaches. The comparison also revealed where improvements to SUES are needed, chiefly through improved estimates of vegetation cover dynamics as input to SUES, and more rigorous parameterization of the surface resistance equations using local-scale suburban flux measurements. Second, Aquacycle is used to identify the impact of an array of water sensitive urban design features on the water balance terms. This analysis confirms the potential to passively control urban microclimate by suburban design features that maximize evapotranspiration, such as vegetated roofs. The subsequent effects on daily maximum air temperatures are estimated using an atmospheric boundary layer budget. Potential energy savings of about 2% in summer cooling are estimated from this analysis. This is a clear ‘return on investment’ of using water to maintain urban greenspace, whether as parks distributed throughout an urban area or individual gardens or vegetated roofs.
Resumo:
We present a benchmark system for global vegetation models. This system provides a quantitative evaluation of multiple simulated vegetation properties, including primary production; seasonal net ecosystem production; vegetation cover; composition and height; fire regime; and runoff. The benchmarks are derived from remotely sensed gridded datasets and site-based observations. The datasets allow comparisons of annual average conditions and seasonal and inter-annual variability, and they allow the impact of spatial and temporal biases in means and variability to be assessed separately. Specifically designed metrics quantify model performance for each process, and are compared to scores based on the temporal or spatial mean value of the observations and a "random" model produced by bootstrap resampling of the observations. The benchmark system is applied to three models: a simple light-use efficiency and water-balance model (the Simple Diagnostic Biosphere Model: SDBM), the Lund-Potsdam-Jena (LPJ) and Land Processes and eXchanges (LPX) dynamic global vegetation models (DGVMs). In general, the SDBM performs better than either of the DGVMs. It reproduces independent measurements of net primary production (NPP) but underestimates the amplitude of the observed CO2 seasonal cycle. The two DGVMs show little difference for most benchmarks (including the inter-annual variability in the growth rate and seasonal cycle of atmospheric CO2), but LPX represents burnt fraction demonstrably more accurately. Benchmarking also identified several weaknesses common to both DGVMs. The benchmarking system provides a quantitative approach for evaluating how adequately processes are represented in a model, identifying errors and biases, tracking improvements in performance through model development, and discriminating among models. Adoption of such a system would do much to improve confidence in terrestrial model predictions of climate change impacts and feedbacks.
Resumo:
Urban land surface models (LSM) are commonly evaluated for short periods (a few weeks to months) because of limited observational data. This makes it difficult to distinguish the impact of initial conditions on model performance or to consider the response of a model to a range of possible atmospheric conditions. Drawing on results from the first urban LSM comparison, these two issues are considered. Assessment shows that the initial soil moisture has a substantial impact on the performance. Models initialised with soils that are too dry are not able to adjust their surface sensible and latent heat fluxes to realistic values until there is sufficient rainfall. Models initialised with too wet soils are not able to restrict their evaporation appropriately for periods in excess of a year. This has implications for short term evaluation studies and implies the need for soil moisture measurements to improve data assimilation and model initialisation. In contrast, initial conditions influencing the thermal storage have a much shorter adjustment timescale compared to soil moisture. Most models partition too much of the radiative energy at the surface into the sensible heat flux at the probable expense of the net storage heat flux.
Resumo:
The substorm current wedge (SCW) is a fundamental component of geomagnetic substorms. Models tend to describe the SCW as a simple line current flowing into the ionosphere towards dawn and out of the ionosphere towards dusk, linked by a westward electrojet. We use multi-spacecraft observations from perigee passes of the Cluster 1 and 4 spacecraft during a substorm on 15 Jan 2010, in conjunction with ground-based observations, to examine the spatial structuring and temporal variability of the SCW. At this time, the spacecraft travelled east-west azimuthally above the auroral region. We show that the SCW has significant azimuthal sub-structure on scales of 100~km at altitudes of 4,000-7,000~km. We identify 26 individual current sheets in the Cluster 4 data and 34 individual current sheets in the Cluster 1 data, with Cluster 1 passing through the SCW 120-240~s after Cluster 4 at 1,300-2,000~km higher altitude. Both spacecraft observed large-scale regions of net upward and downward field-aligned current, consistent with the large-scale characteristics of the SCW, although sheets of oppositely directed currents were observed within both regions. We show that the majority of these current sheets were closely aligned to a north-south direction, in contrast to the expected east-west orientation of the pre-onset aurora. Comparing our results with observations of the field-aligned current associated with bursty bulk flows (BBFs) we conclude that significant questions remain for the explanation of SCW structuring by BBF driven ``wedgelets". Our results therefore represent constraints on future modelling and theoretical frameworks on the generation of the SCW.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
The Weather Research and Forecasting model was applied to analyze variations in the planetary boundary layer (PBL) structure over Southeast England including central and suburban London. The parameterizations and predictive skills of two nonlocal mixing PBL schemes, YSU and ACM2, and two local mixing PBL schemes, MYJ and MYNN2, were evaluated over a variety of stability conditions, with model predictions at a 3 km grid spacing. The PBL height predictions, which are critical for scaling turbulence and diffusion in meteorological and air quality models, show significant intra-scheme variance (> 20%), and the reasons are presented. ACM2 diagnoses the PBL height thermodynamically using the bulk Richardson number method, which leads to a good agreement with the lidar data for both unstable and stable conditions. The modeled vertical profiles in the PBL, such as wind speed, turbulent kinetic energy (TKE), and heat flux, exhibit large spreads across the PBL schemes. The TKE predicted by MYJ were found to be too small and show much less diurnal variation as compared with observations over London. MYNN2 produces better TKE predictions at low levels than MYJ, but its turbulent length scale increases with height in the upper part of the strongly convective PBL, where it should decrease. The local PBL schemes considerably underestimate the entrainment heat fluxes for convective cases. The nonlocal PBL schemes exhibit stronger mixing in the mean wind fields under convective conditions than the local PBL schemes and agree better with large-eddy simulation (LES) studies.
Resumo:
Inverse methods are widely used in various fields of atmospheric science. However, such methods are not commonly used within the boundary-layer community, where robust observations of surface fluxes are a particular concern. We present a new technique for deriving surface sensible heat fluxes from boundary-layer turbulence observations using an inverse method. Doppler lidar observations of vertical velocity variance are combined with two well-known mixed-layer scaling forward models for a convective boundary layer (CBL). The inverse method is validated using large-eddy simulations of a CBL with increasing wind speed. The majority of the estimated heat fluxes agree within error with the proscribed heat flux, across all wind speeds tested. The method is then applied to Doppler lidar data from the Chilbolton Observatory, UK. Heat fluxes are compared with those from a mast-mounted sonic anemometer. Errors in estimated heat fluxes are on average 18 %, an improvement on previous techniques. However, a significant negative bias is observed (on average −63%) that is more pronounced in the morning. Results are improved for the fully-developed CBL later in the day, which suggests that the bias is largely related to the choice of forward model, which is kept deliberately simple for this study. Overall, the inverse method provided reasonable flux estimates for the simple case of a CBL. Results shown here demonstrate that this method has promise in utilizing ground-based remote sensing to derive surface fluxes. Extension of the method is relatively straight-forward, and could include more complex forward models, or other measurements.