124 resultados para MOTION CAPTURE
Resumo:
In this paper, we apply one-list capture-recapture models to estimate the number of scrapie-affected holdings in Great Britain. We applied this technique to the Compulsory Scrapie Flocks Scheme dataset where cases from all the surveillance sources monitoring the presence of scrapie in Great Britain, the abattoir survey, the fallen stock survey and the statutory reporting of clinical cases, are gathered. Consequently, the estimates of prevalence obtained from this scheme should be comprehensive and cover all the different presentations of the disease captured individually by the surveillance sources. Two estimators were applied under the one-list approach: the Zelterman estimator and Chao's lower bound estimator. Our results could only inform with confidence the scrapie-affected holding population with clinical disease; this moved around the figure of 350 holdings in Great Britain for the period under study, April 2005-April 2006. Our models allowed the stratification by surveillance source and the input of covariate information, holding size and country of origin. None of the covariates appear to inform the model significantly. Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.
Resumo:
1. Suspension feeding by caseless caddisfly larvae (Trichoptera) constitutes a major pathway for energy flow, and strongly influences productivity, in streams and rivers. 2. Consideration of the impact of these animals on lotic ecosystems has been strongly influenced by a single study investigating the efficiency of particle capture of nets built by one species of hydropsychid caddisfly. 3. Using water sampling techniques at appropriate spatial scales, and taking greater consideration of local hydrodynamics than previously, we examined the size-frequency distribution of particles captured by the nets of Hydropsyche siltalai. Our results confirm that capture nets are selective in terms of particle size, and in addition suggest that this selectivity is for particles likely to provide the most energy. 4. By incorporating estimates of flow diversion around the nets of caseless caddisfly larvae, we show that capture efficiency (CE) is considerably higher than previously estimated, and conclude that more consideration of local hydrodynamics is needed to evaluate the efficiency of particle capture. 5. We use our results to postulate a mechanistic explanation for a recent example of interspecific facilitation, whereby a reduction of near-bed velocities seen in single species monocultures leads to increased capture rates and local depletion of seston within the region of reduced velocity.
Resumo:
The temperature dependent mixing of organic and fluorous phases is one of the key principals of fluorous biphasic systems (FBS). Given the high cost of the perfluorous solvents and their impacts to the environment, it is apparent that elimination of these solvents in bulk quantity in the FBS is advantageous. We report for the first time, the surface coverage of silica with a fluorous solvent like material that traps (at ambient temperatures) and releases (at elevated temperatures) a fluorous tin bromide in organic solvent. Here, we demonstrate the catalytic utilisation of this species for the hydrocyclisation of 6-bromo-1-hexene with NaBH4. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Geological carbon dioxide storage (CCS) has the potential to make a significant contribution to the decarbonisation of the UK. Amid concerns over maintaining security, and hence diversity, of supply, CCS could allow the continued use of coal, oil and gas whilst avoiding the CO2 emissions currently associated with fossil fuel use. This project has explored some of the geological, environmental, technical, economic and social implications of this technology. The UK is well placed to exploit CCS with a large offshore storage capacity, both in disused oil and gas fields and saline aquifers. This capacity should be sufficient to store CO2 from the power sector (at current levels) for a least one century, using well understood and therefore likely to be lower-risk, depleted hydrocarbon fields and contained parts of aquifers. It is very difficult to produce reliable estimates of the (potentially much larger) storage capacity of the less well understood geological reservoirs such as non-confined parts of aquifers. With the majority of its large coal fired power stations due to be retired during the next 15 to 20 years, the UK is at a natural decision point with respect to the future of power generation from coal; the existence of both national reserves and the infrastructure for receiving imported coal makes clean coal technology a realistic option. The notion of CCS as a ‘bridging’ or ‘stop-gap’ technology (i.e. whilst we develop ‘genuinely’ sustainable renewable energy technologies) needs to be examined somewhat critically, especially given the scale of global coal reserves. If CCS plant is built, then it is likely that technological innovation will bring down the costs of CO2 capture, such that it could become increasingly attractive. As with any capitalintensive option, there is a danger of becoming ‘locked-in’ to a CCS system. The costs of CCS in our model for UK power stations in the East Midlands and Yorkshire to reservoirs in the North Sea are between £25 and £60 per tonne of CO2 captured, transported and stored. This is between about 2 and 4 times the current traded price of a tonne of CO2 in the EU Emissions Trading Scheme. In addition to the technical and economic requirements of the CCS technology, it should also be socially and environmentally acceptable. Our research has shown that, given an acceptance of the severity and urgency of addressing climate change, CCS is viewed favourably by members of the public, provided it is adopted within a portfolio of other measures. The most commonly voiced concern from the public is that of leakage and this remains perhaps the greatest uncertainty with CCS. It is not possible to make general statements concerning storage security; assessments must be site specific. The impacts of any potential leakage are also somewhat uncertain but should be balanced against the deleterious effects of increased acidification in the oceans due to uptake of elevated atmospheric CO2 that have already been observed. Provided adequate long term monitoring can be ensured, any leakage of CO2 from a storage site is likely to have minimal localised impacts as long as leaks are rapidly repaired. A regulatory framework for CCS will need to include risk assessment of potential environmental and health and safety impacts, accounting and monitoring and liability for the long term. In summary, although there remain uncertainties to be resolved through research and demonstration projects, our assessment demonstrates that CCS holds great potential for significant cuts in CO2 emissions as we develop long term alternatives to fossil fuel use. CCS can contribute to reducing emissions of CO2 into the atmosphere in the near term (i.e. peak-shaving the future atmospheric concentration of CO2), with the potential to continue to deliver significant CO2 reductions over the long term.
Resumo:
The paper presents the techno-economic modelling of CO2 capture process in coal-fired power plants. An overall model is being developed to compare carbon capture and sequestration options at locations within the UK, and for studies of the sensitivity of the cost of disposal to changes in the major parameters of the most promising solutions identified. Technological options of CO2 capture have been studied and cost estimation relationships (CERs) for the chosen options calculated. Created models are related to the capital, operation and maintenance cost. A total annualised cost of plant electricity output and amount of CO2 avoided have been developed. The influence of interest rates and plant life has been analysed as well. The CERs are included as an integral part of the overall model.
Resumo:
The evaluation of life cycle greenhouse gas emissions from power generation with carbon capture and storage (CCS) is a critical factor in energy and policy analysis. The current paper examines life cycle emissions from three types of fossil-fuel-based power plants, namely supercritical pulverized coal (super-PC), natural gas combined cycle (NGCC) and integrated gasification combined cycle (IGCC), with and without CCS. Results show that, for a 90% CO2 capture efficiency, life cycle GHG emissions are reduced by 75-84% depending on what technology is used. With GHG emissions less than 170 g/kWh, IGCC technology is found to be favorable to NGCC with CCS. Sensitivity analysis reveals that, for coal power plants, varying the CO2 capture efficiency and the coal transport distance has a more pronounced effect on life cycle GHG emissions than changing the length of CO2 transport pipeline. Finally, it is concluded from the current study that while the global warming potential is reduced when MEA-based CO2 capture is employed, the increase in other air pollutants such as NOx and NH3 leads to higher eutrophication and acidification potentials.
Resumo:
Do we view the world differently if it is described to us in figurative rather than literal terms? An answer to this question would reveal something about both the conceptual representation of figurative language and the scope of top-down influences oil scene perception. Previous work has shown that participants will look longer at a path region of a picture when it is described with a type of figurative language called fictive motion (The road goes through the desert) rather than without (The road is in the desert). The current experiment provided evidence that such fictive motion descriptions affect eye movements by evoking mental representations of motion. If participants heard contextual information that would hinder actual motion, it influenced how they viewed a picture when it was described with fictive motion. Inspection times and eye movements scanning along the path increased during fictive motion descriptions when the terrain was first described as difficult (The desert is hilly) as compared to easy (The desert is flat); there were no such effects for descriptions without fictive motion. It is argued that fictive motion evokes a mental simulation of motion that is immediately integrated with visual processing, and hence figurative language can have a distinct effect on perception. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Static movement aftereffects (MAEs) were measured after adaptation to vertical square-wave luminance gratings drifting horizontally within a central window in a surrounding stationary vertical grating. The relationship between the stationary test grating and the surround was manipulated by varying the alignment of the stationary stripes in the window and those in the surround, and the type of outline separating the window and the surround [no outline, black outline (invisible on black stripes), and red outline (visible throughout its length)]. Offsetting the stripes in the window significantly increased both the duration and ratings of the strength of MAEs. Manipulating the outline had no significant effect on either measure of MAE strength. In a second experiment, in which the stationary test fields alone were presented, participants judged how segregated the test field appeared from its surround. In contrast to the MAE measures, outline as well as offset contributed to judged segregation. In a third experiment, in which test-stripe offset wits systematically manipulated, segregation ratings rose with offset. However, MAE strength was greater at medium than at either small or large (180 degrees phase shift) offsets. The effects of these manipulations on the MAE are interpreted in terms of a spatial mechanism which integrates motion signals along collinear contours of the test field and surround, and so causes a reduction of motion contrast at the edges of the test field.
Resumo:
As we move through the world, our eyes acquire a sequence of images. The information from this sequence is sufficient to determine the structure of a three-dimensional scene, up to a scale factor determined by the distance that the eyes have moved [1, 2]. Previous evidence shows that the human visual system accounts for the distance the observer has walked [3,4] and the separation of the eyes [5-8] when judging the scale, shape, and distance of objects. However, in an immersive virtual-reality environment, observers failed to notice when a scene expanded or contracted, despite having consistent information about scale from both distance walked and binocular vision. This failure led to large errors in judging the size of objects. The pattern of errors cannot be explained by assuming a visual reconstruction of the scene with an incorrect estimate of interocular separation or distance walked. Instead, it is consistent with a Bayesian model of cue integration in which the efficacy of motion and disparity cues is greater at near viewing distances. Our results imply that observers are more willing to adjust their estimate of interocular separation or distance walked than to accept that the scene has changed in size.
Resumo:
An increasing number of neuroscience experiments are using virtual reality to provide a more immersive and less artificial experimental environment. This is particularly useful to navigation and three-dimensional scene perception experiments. Such experiments require accurate real-time tracking of the observer's head in order to render the virtual scene. Here, we present data on the accuracy of a commonly used six degrees of freedom tracker (Intersense IS900) when it is moved in ways typical of virtual reality applications. We compared the reported location of the tracker with its location computed by an optical tracking method. When the tracker was stationary, the root mean square error in spatial accuracy was 0.64 mm. However, we found that errors increased over ten-fold (up to 17 mm) when the tracker moved at speeds common in virtual reality applications. We demonstrate that the errors we report here are predominantly due to inaccuracies of the IS900 system rather than the optical tracking against which it was compared. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The perceived displacement of motion-defined contours in peripheral vision was examined in four experiments. In Experiment 1, in line with Ramachandran and Anstis' finding [Ramachandran, V. S., & Anstis, S. M. (1990). Illusory displacement of equiluminous kinetic edges. Perception, 19, 611-616], the border between a field of drifting dots and a static dot pattern was apparently displaced in the same direction as the movement of the dots. When a uniform dark area was substituted for the static dots, a similar displacement was found, but this was smaller and statistically insignificant. In Experiment 2, the border between two fields of dots moving in opposite directions was displaced in the direction of motion of the dots in the more eccentric field, so that the location of a boundary defined by a diverging pattern is perceived as more eccentric, and that defined by a converging as less eccentric. Two explanations for this effect (that the displacement reflects a greater weight given to the more eccentric motion, or that the region containing stronger centripetal motion components expands perceptually into that containing centrifugal motion) were tested in Experiment 3, by varying the velocity of the more eccentric region. The results favoured the explanation based on the expansion of an area in centripetal motion. Experiment 4 showed that the difference in perceived location was unlikely to be due to differences in the discriminability of contours in diverging and converging pattems, and confirmed that this effect is due to a difference between centripetal and centrifugal motion rather than motion components in other directions. Our result provides new evidence for a bias towards centripetal motion in human vision, and suggests that the direction of motion-induced displacement of edges is not always in the direction of an adjacent moving pattern. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper presents a paralleled Two-Pass Hexagonal (TPA) algorithm constituted by Linear Hashtable Motion Estimation Algorithm (LHMEA) and Hexagonal Search (HEXBS) for motion estimation. In the TPA., Motion Vectors (MV) are generated from the first-pass LHMEA and are used as predictors for second-pass HEXBS motion estimation, which only searches a small number of Macroblocks (MBs). We introduced hashtable into video processing and completed parallel implementation. We propose and evaluate parallel implementations of the LHMEA of TPA on clusters of workstations for real time video compression. It discusses how parallel video coding on load balanced multiprocessor systems can help, especially on motion estimation. The effect of load balancing for improved performance is discussed. The performance or the algorithm is evaluated by using standard video sequences and the results are compared to current algorithms.