68 resultados para METRO delivery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mucosa-mimetic polymeric hydrogels have been developed to replace the use of animal tissues as substrates for characterising mucoadhesive properties of drug delivery systems.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the results of first systematic studies of organic adsorption from aqueous solutions onto relatively long single walled carbon nanotubes (four tubes, in initial and oxidised forms). Using molecular dynamics simulations (GROMACS package) we discuss the behaviour of tube-water as well as tube-adsorbate systems, for three different adsorbates (benzene, phenol and paracetamol).

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small interfering RNA (siRNA), antisense oligonucleotides (ODNs), ribozymes and DNAzymes have emerged as sequence-specific inhibitors of gene expression that may have therapeutic potential in the treatment of a wide range of diseases. Due to their rapid degradation in vivo, the efficacy of naked gene silencing nucleic acids is relatively short lived. The entrapment of these nucleic acids within biodegradable sustained-release delivery systems may improve their stability and reduce the doses required for efficacy. In this study, we have evaluated the potential in vitro and in vivo use of biodegradable poly (d,l-lactide-co-glycolide) copolymer (PLGA) microspheres as sustained delivery devices for ODNs, ribozyme, siRNA and DNA enzymes. In addition, we investigated the release of ODN conjugates bearing 5′-end lipophilic groups. The in vitro sustained release profiles of microsphere-entrapped nucleic acids were dependent on variables such as the type of nucleic acid used, the nature of the lipophilic group, and whether the nucleic acid used was single or double stranded. For in vivo studies, whole body autoradiography was used to monitor the bio-distribution of either free tritium-labelled ODN or that entrapped within PLGA microspheres following subcutaneous administration in Balb-c mice. The majority of the radioactivity associated with free ODN was eliminated within 24 h whereas polymer-released ODN persisted in organs and at the site of administration even after seven days post-administration. Polymer microsphere released ODN exhibited a similar tissue and cellular tropism to the free ODN. Micro-autoradiography analyses of the liver and kidneys showed similar bio-distribution for polymer-released and free ODNs with the majority of radioactivity being concentrated in the proximal convoluted tubules of the kidney and in the Kupffer cells of the liver. These findings suggest that biodegradable PLGA microspheres offer a method for improving the in vivo sustained delivery of gene silencing nucleic acids, and hence are worthy of further investigation as delivery systems for these macromolecules.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This invention relates to solid formulations for the oral delivery of live microbial cells which comprise dried viable cells and small amounts of a bile acid binding agent, for example, an anion exchange resin such as cholestyramine. The presence of bile acid binding agents in the formulation significantly increases the survival of the cells in the intestinal tract and facilitates delivery of the viable cells to the intestine.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new drug delivery method for infants is presented which incorporates an active pharmaceutical ingredient (API)-loaded insert into a nipple shield delivery system (NSDS). The API is released directly into milk during breastfeeding. This study investigates the feasibility of using the NSDS to deliver the microbicide sodium dodecyl sulfate (SDS), with the goal of preventing mother-to-child transmission (MTCT) of HIV during breastfeeding in low-resource settings, when there is no safer alternative for the infant but to breastfeed. SDS has been previously shown to effectively inactivate HIV in human milk. An apparatus was developed to simulate milk flow through and drug release from a NSDS. Using this apparatus milk was pulsed through a prototype device containing a non-woven fiber insert impregnated with SDS and the microbicide was rapidly released. The total SDS release from inserts ranged from 70 to 100% of the average 0.07 g load within 50 ml (the volume of a typical breastfeed). Human milk spiked with H9/HIVIIIB cells was also passed through the same set-up. Greater than 99% reduction of cell-associated HIV infectivity was achieved in the first 10 ml of milk. This proof of concept study demonstrates efficient drug delivery to breastfeeding infants is achievable using the NSDS.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The administration of probiotic bacteria as nutraceuticals is an area that has rapidly expanded in recent years, with a global market worth $32.6 billion predicted by 2014. Many of the health promoting claims attributed to these bacteria are dependent on the cells being both viable and sufficiently numerous in the intestinal tract. The oral administration of most bacteria results in a large loss of viability associated with passage through the stomach, which is attributed to the high acid and bile salt concentrations present. This loss of viability effectively lowers the efficacy of the administered supplement. The formulation of these probiotics into microcapsules is an emerging method to reduce cell death during GI passage, as well as an opportunity to control release of these cells across the intestinal tract. The majority of this technology is based on the immobilization of bacteria into a polymer matrix, which retains its structure in the stomach before degrading and dissolving in the intestine, unlike the diffusion based unloading of most controlled release devices for small molecules. This review shall provide an overview of progress in this field as well as draw attention to areas where studies have fallen short. This will be followed by a discussion of emerging trends in the field, highlighting key areas in which further research is necessary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chitosan and its half-acetylated derivative have been compared as excipients in mucoadhesive tablets containing ibuprofen. Initially the powder formulations containing the polymers and the drug were prepared by either co-spray drying or physical co-grinding. Polymer–drug interactions and the degree of drug crystallinity in these formulations were assessed by infrared spectroscopy and differential scanning calorimetry. Tablets were prepared and their swelling and dissolution properties were studied in media of various pHs. Mucoadhesive properties of ibuprofen-loaded and drug-free tablets were evaluated by analysing their detachment from pig gastric mucosa over a range of pHs. Greater polymer–drug interactions were seen for spray-dried particles compared to co-ground samples and drug loading into chitosan-based microparticles (41%) was greater than the corresponding half-acetylated samples (32%). Swelling and drug release was greater with the half-acetylated chitosan tablets than tablets containing the parent polymer and both tablets were mucoadhesive, the extent of which was dependent on substrate pH. The results illustrate the potential sustained drug delivery benefits of both chitosan and its half-acetylated derivative as mucoadhesive tablet excipients.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Polyvinylpyrrolidone is a widely used in tablet formulations with the linear form acting as a wetting agent and disintegrant whereas the cross-linked form is a super-disintegrant. We have previously reported that simply mixing the commercial cross-linked polymer with ibuprofen disrupted drug crystallinity with consequent improvements in drug dissolution behavior. In this study, we have designed and synthesized novel cross-linking agents containing a range of oligoether moieties which have then be polymerized with vinylpyrrolidone to generate a suite of novel excipients with enhanced hydrogen-bonding capabilities. The polymers have a porous surface and swell in most common solvents and in water; properties which suggest their value as disintegrants. The polymers were evaluated in simple physical mixtures with ibuprofen as a model poorly-water soluble drug. The results show that the novel PVPs induce the drug to become “X-ray amorphous”, which increased dissolution to a greater extent than that seen with commercial cross-linked PVP. The polymers stabilize the amorphous drug with no evidence for recrystallization seen after 20 weeks storage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The oral administration of probiotic bacteria has shown potential in clinical trials for the alleviation of specific disorders of the gastrointestinal tract. However, cells must be alive in order to exert these benefits. The low pH of the stomach can greatly reduce the number of viable microorganisms that reach the intestine, thereby reducing the efficacy of the administration. Herein, a model probiotic, Bifidobacterium breve, has been encapsulated into an alginate matrix before coating in multilayers of alternating alginate and chitosan. The intention of this formulation was to improve the survival of B. breve during exposure to low pH and to target the delivery of the cells to the intestine. The material properties were first characterized before in vitro testing. Biacore™ experiments allowed for the polymer interactions to be confirmed; additionally, the stability of these multilayers to buffers simulating the pH of the gastrointestinal tract was demonstrated. Texture analysis was used to monitor changes in the gel strength during preparation, showing a weakening of the matrices during coating as a result of calcium ion sequestration. The build-up of multilayers was confirmed by confocal laser-scanning microscopy, which also showed the increase in the thickness of coat over time. During exposure to in vitro gastric conditions, an increase in viability from <3 log(CFU) per mL, seen in free cells, up to a maximum of 8.84 ± 0.17 log(CFU) per mL was noted in a 3-layer coated matrix. Multilayer-coated alginate matrices also showed a targeting of delivery to the intestine, with a gradual release of their loads over 240 min.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

If acid-sensitive drugs or cells are administered orally, there is often a reduction in efficacy associated with gastric passage. Formulation into a polymer matrix is a potential method to improve their stability. The visualization of pH within these materials may help better understand the action of these polymer systems and allow comparison of different formulations. We herein describe the development of a novel confocal laser-scanning microscopy (CLSM) method for visualizing pH changes within polymer matrices and demonstrate its applicability to an enteric formulation based on chitosan-coated alginate gels. The system in question is first shown to protect an acid-sensitive bacterial strain to low pH, before being studied by our technique. Prior to this study, it has been claimed that protection by these materials is a result of buffering, but this has not been demonstrated. The visualization of pH within these matrices during exposure to a pH 2.0 simulated gastric solution showed an encroachment of acid from the periphery of the capsule, and a persistence of pHs above 2.0 within the matrix. This implies that the protective effect of the alginate-chitosan matrices is most likely due to a combination of buffering of acid as it enters the polymer matrix and the slowing of acid penetration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Power delivery for biomedical implants is a major consideration in their design for both measurement and stimulation. When performed by a wireless technique, transmission efficiency is critically important not only because of the costs associated with any losses but also because of the nature of those losses, for example, excessive heat can be uncomfortable for the individual involved. In this study, a method and means of wireless power transmission suitable for biomedical implants are both discussed and experimentally evaluated. The procedure initiated is comparable in size and simplicity to those methods already employed; however, some of Tesla’s fundamental ideas have been incorporated in order to obtain a significant improvement in efficiency. This study contains a theoretical basis for the approach taken; however, the emphasis here is on practical experimental analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Duchenne muscular dystrophy is a severe X-linked inherited muscle wasting disorder caused by mutations in the dystrophin gene. Adeno-associated virus (AAV) vectors have been extensively used to deliver genes efficiently for dystrophin expression in skeletal muscles. To overcome limited packaging capacity of AAV vectors (<5 kb), truncated recombinant microdystrophin genes with deletions of most of rod and carboxyl-terminal (CT) domains of dystrophin have been developed. We have previously shown the efficiency of mRNA sequence–optimized microdystrophin (ΔR4-23/ΔCT, called MD1) with deletion of spectrin-like repeat domain 4 to 23 and CT domain in ameliorating the pathology of dystrophic mdx mice. However, the CT domain of dystrophin is thought to recruit part of the dystrophin-associated protein complex, which acts as a mediator of signalling between extracellular matrix and cytoskeleton in muscle fibers. In this study, we extended the ΔR4-23/ΔCT microdystrophin by incorporating helix 1 of the coiled-coil motif in the CT domain of dystrophin (MD2), which contains the α1-syntrophin and α-dystrobrevin binding sites. Intramuscular injection of AAV2/9 expressing CT domain–extended microdystrophin showed efficient dystrophin expression in tibialis anterior muscles of mdx mice. The presence of the CT domain of dystrophin in MD2 increased the recruitment of α1-syntrophin and α-dystrobrevin at the sarcolemma and significantly improved the muscle resistance to lengthening contraction–induced muscle damage in the mdx mice compared with MD1. These results suggest that the incorporation of helix 1 of the coiled-coil motif in the CT domain of dystrophin to the microdystrophins will substantially improve their efficiency in restoring muscle function in patients with Duchenne muscular dystrophy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Particulate antigen assemblies in the nanometer range and DNA plasmids are particularly interesting for designing vaccines. We hypothesised that a combination of these approaches could result in a new delivery method of gp160 envelope HIV-1 vaccine which could combine the potency of virus-like particles (VLPs) and the simplicity of use of DNA vaccines. Characterisation of lentivirus-like particles (lentiVLPs) by western blot, dynamic light scattering and electron microscopy revealed that their protein pattern, size and structure make them promising candidates for HIV-1 vaccines. Although all particles were similar with regard to size and distribution, they clearly differed in p24 capsid protein content suggesting that Rev may be required for particle maturation and Gag processing. In vivo, lentiVLP pseudotyping with the gp160 envelope or with a combination of gp160 and VSV-G envelopes did not influence the magnitude of the immune response but the combination of lentiVLPs with Alum adjuvant resulted in a more potent response. Interestingly, the strongest immune response was obtained when plasmids encoding lentiVLPs were co-delivered to mice muscles by electrotransfer, suggesting that lentiVLPs were efficiently produced in vivo or the packaging genes mediate an adjuvant effect. DNA electrotransfer of plasmids encoding lentivirus-like particles offers many advantages and appears therefore as a promising delivery method of HIV-1 vaccines. Keywords:VLP, Electroporation, Electrotransfer, HIV vaccine, DNA vaccine