52 resultados para MANGANESE-DIOXIDE
Resumo:
The two air-stable manganese(II) salicylate complexes [Mn2(Hsal)4(H2O)4]1 and polymeric [{Mn2(sal)2(Hsal)(H2O)(H3O)(py)4·2py}n]2(H2sal = salicylic acid and py = pyridine) have been synthesised easily, and their crystal structures determined. Both contain unsymmetrically bridging salicylate ligands. In the presence of added pyridine 1 and 2 vigorously catalyse the disproportionation of H2O2.
Resumo:
Predicting how insect crop pests will respond to global climate change is an important part of increasing crop production for future food security, and will increasingly rely on empirically based evidence. The effects of atmospheric composition, especially elevated carbon dioxide (eCO(2)), on insect herbivores have been well studied, but this research has focussed almost exclusively on aboveground insects. However, responses of root-feeding insects to eCO(2) are unlikely to mirror these trends because of fundamental differences between aboveground and belowground habitats. Moreover, changes in secondary metabolites and defensive responses to insect attack under eCO(2) conditions are largely unexplored for root herbivore interactions. This study investigated how eCO(2) (700 mu mol mol-1) affected a root-feeding herbivore via changes to plant growth and concentrations of carbon (C), nitrogen (N) and phenolics. This study used the root-feeding vine weevil, Otiorhynchus sulcatus and the perennial crop, Ribes nigrum. Weevil populations decreased by 33% and body mass decreased by 23% (from 7.2 to 5.4 mg) in eCO(2). Root biomass decreased by 16% in eCO(2), which was strongly correlated with weevil performance. While root N concentrations fell by 8%, there were no significant effects of eCO(2) on root C and N concentrations. Weevils caused a sink in plants, resulting in 8-12% decreases in leaf C concentration following herbivory. There was an interactive effect of CO(2) and root herbivory on root phenolic concentrations, whereby weevils induced an increase at ambient CO(2), suggestive of defensive response, but caused a decrease under eCO(2). Contrary to predictions, there was a positive relationship between root phenolics and weevil performance. We conclude that impaired root-growth underpinned the negative effects of eCO(2) on vine weevils and speculate that the plant's failure to mount a defensive response at eCO(2) may have intensified these negative effects.
Resumo:
The mammalian bradykinin-degrading enzyme aminopeptidase P (AP-P; E. C. 3.4.11.9) is a metal-dependent enzyme and is a member of the peptidase clan MG. AP-P exists as membrane-bound and cytosolic forms, which represent distinct gene products. A partially truncated clone encoding the cytosolic form was obtained from a human pancreatic cDNA library and the 5' region containing the initiating Met was obtained by 5' rapid accumulation of cDNA ends (RACE). The open reading frame encodes a protein of 623 amino acids with a calculated molecular mass of 69,886 Da. The full-length cDNA with a C-terminal hexahistidine tag was expressed in Escherichia coli and COS-1 cells and migrated on SDS-PAGE with a molecular mass of 71 kDa. The expressed cytosolic AP-P hydrolyzed the X-Pro bond of bradykinin and substance P but did not hydrolyze Gly-Pro-hydroxyPro. Hydrolysis of bradykinin was inhibited by 1,10-phenanthroline and by the specific inhibitor of the membrane-bound form of mammalian AP-P, apstatin. Inductively coupled plasma atomic emission spectroscopy of AP-P expressed in E. coli revealed the presence of 1 mol of manganese/mol of protein and insignificant amounts of cobalt, iron, and zinc. The enzymatic activity of AP-P was promoted in the presence of Mn(II), and this activation was increased further by the addition of glutathione. The only other metal ion to cause slight activation of the enzyme was Co(II), with Ca(II), Cu(II), Mg(II), Ni(II), and Zn(II) all being inhibitory. Removal of the metal ion from the protein was achieved by treatment with 1,10-phenanthroline. The metal-free enzyme was reactivated by the addition of Mn(II) and, partially, by Fe(II). Neither Co(II) nor Zn(II) reactivated the metal-free enzyme. On the basis of these data we propose that human cytosolic AP-P is a single metal ion-dependent enzyme and that manganese is most likely the metal ion used in vivo.
Resumo:
Three new Mn(III) complexes [MnL1(OOCH)(OH2)] (1), [MnL2(OH2)(2)][Mn2L22(NO2)(3)] (2) and [Mn2L21(NO2)(2)] (3) (where H2L1 = H(2)Me(2)Salen = 2,7-bis(2-hydroxyphenyl)-2,6-diazaocta-2,6-diene and H2L2 = H(2)Salpn = 1,7-bis(2-hydroxyphenyl)-2,6-diazahepta-1,6-diene) have been synthesized. X-ray crystal structure analysis reveals that 1 is a mononuclear species whereas 2 contains a mononuclear cationic and a dinuclear nitrite bridged (mu-1 kappa O:2 kappa O') anionic unit. Complex 3 is a phenoxido bridged dimer containing terminally coordinated nitrite. Complexes 1-3 show excellent catecholase-like activity with 3,5-di-tert-butylcatechol (3,5-DTBC) as the substrate. Kinetic measurements suggest that the rate of catechol oxidation follows saturation kinetics with respect to the substrate and first order kinetics with respect to the catalyst. Formation of bis(mu-oxo)dimanganese(III,III) as an intermediate during the course of reaction is identified from ESI-MS spectra. The characteristic six line EPR spectra of complex 2 in the presence of 3,5-DTBC supports the formation of manganese(II)-semiquinonate as an intermediate species during the catalytic oxidation of 3,5-DTBC.
Resumo:
A 1,1' bis(diphenyl phosphino ferrocene) dioxide complex of the uranyl dichloride was synthesized and characterized by elemental analysis, H-1, P-31{H-1} NMR and X-ray diffraction methods. The structure of the compound shows that the uranium(VI) ion is surrounded by four oxygen and two chlorine atoms in an octahedral geometry. Two oxygen atoms from the bis (diphenyl phosphino ferrocene) dioxide and two chlorine atoms form a square planar arrangement. Two uranyl oxygen atoms occupy the axial positions. The bis(diphenyl phosphino ferrocene) dioxide ligand acts as a bidentate chelating ligand with a bite angle of 82.90(16)degrees around the uranyl group. The two chlorine atoms are mutually cis with a CI-U-Cl angle of 97.75(7)degrees.
Resumo:
Barium ferrites substituted by Mn–Sn, Co–Sn, and Mn–Co–Sn with general formulae BaFe12−2xMnxSnxO19 (x=0.2–1.0), BaFe12−2xCoxSnxO19 (x=0.2–0.8), and BaFe12−2xCox/2Mnx/2SnxO19 (x=0.1–0.6), respectively, have been prepared by a previously reported co-precipitation method. The efficiency of the method was refined by lowering the reaction temperature and shortening the required reaction time, due to which crystallinity improved and the value of saturated magnetization increased as well. Low coercivity temperature coefficients, which are adjustable by doping, were achieved by Mn–Sn and Mn–Co–Sn doping. Synthesis efficiency and the effect of doping are discussed taking into account accumulated data concerning the synthesis and crystal structure of ferrites.
Resumo:
By using simulation methods, we studied the adsorption of binary CO2-CH4 mixtures on various CH4 preadsorbed carbonaceous materials (e.g., triply periodic carbon minimal surfaces, slit-shaped carbon micropores, and Harris's virtual porous carbons) at 293 K. Regardless of the different micropore geometry, two-stage mechanism of CH4 displacement from carbon nanospaces by coadsorbed CO2 has been proposed. In the first stage, the coadsorbed CO2 molecules induced the enhancement of CH4 adsorbed amount. In the second stage, the stronger affinity of CO2 to flat/curved graphitic surfaces as well as CO2-CO2 interactions cause the displacement of CH4 molecules from carbonaceous materials. The operating conditions of CO2-induced cleaning of the adsorbed phase from CH4 mixture component strongly depend on the size of the carbon micropores, but, in general, the enhanced adsorption field in narrow carbon ultramicropores facilitates the nonreactive displacement of CH4 by coadsorbed CO2. This is because in narrow carbon ultramicropores the equilibrium CO2/CH4 selectivity (i.e., preferential adsorption toward CO2) increased significantly. The adsorption field in wider micropores (i.e., the overall surface energy) for both CO2 and CH4 is very similar, which decreases the preferential CO2 adsorption. This suppresses the displacement of CH4 by coadsorbed CO2 and assists further adsorption of CH4 from the bulk mixture (i.e., CO2/CH4 mixing in adsorbed phase).
Resumo:
Suburban areas continue to grow rapidly and are potentially an important land-use category for anthropogenic carbon-dioxide (CO2) emissions. Here eddy covariance techniques are used to obtain ecosystem-scale measurements of CO2 fluxes (FC) from a suburban area of Baltimore, Maryland, USA (2002–2006). These are among the first multi-year measurements of FC in a suburban area. The study area is characterized by low population density (1500 inhabitants km−2) and abundant vegetation (67.4% vegetation land-cover). FC is correlated with photosynthetic active radiation (PAR), soil temperature, and wind direction. Missing hourly FC is gap-filled using empirical relations between FC, PAR, and soil temperature. Diurnal patterns show net CO2 emissions to the atmosphere during winter and net CO2 uptake by the surface during summer daytime hours (summer daily total is −1.25 g C m−2 d−1). Despite the large amount of vegetation the suburban area is a net CO2 source of 361 g C m−2 y−1 on average.
Resumo:
It is estimated that the adult human brain contains 100 billion neurons with 5–10 times as many astrocytes. Although it has been generally considered that the astrocyte is a simple supportive cell to the neuron, recent research has revealed new functionality of the astrocyte in the form of information transfer to neurons of the brain. In our previous work we developed a protocol to pattern the hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. In this work, we report how we have managed to pattern hNT astrocytes, on parylene-C/SiO2 substrates to single cell resolution. This article disseminates the nanofabrication and cell culturing steps necessary for the patterning of such cells. In addition, it reports the necessary strip lengths and strip width dimensions of parylene-C that encourage high degrees of cellular coverage and single cell isolation for this cell type. The significance in patterning the hNT astrocyte on silicon chip is that it will help enable single cell and network studies into the undiscovered functionality of this interesting cell, thus, contributing to closer pathological studies of the human brain.
Resumo:
We report here the patterning of primary rat neurons and astrocytes from the postnatal hippocampus on ultra-thin parylene-C deposited on a silicon dioxide substrate, following observations of neuronal, astrocytic and nuclear coverage on strips of different lengths, widths and thicknesses. Neuronal and glial growth was characterized ‘on’, ‘adjacent to’ and ‘away from’ the parylene strips. In addition, the article reports how the same material combination can be used to isolate single cells along thin tracks of parylene-C. This is demonstrated with a series of high magnification images of the experimental observations for varying parylene strip widths and thicknesses. Thus, the findings demonstrate the possibility to culture cells on ultra-thin layers of parylene-C and localize single cells on thin strips. Such work is of interest and significance to the Neuroengineering and Multi-Electrode Array (MEA) communities, as it provides an alternative insulating material in the fabrication of embedded micro-electrodes, which can be used to facilitate single cell stimulation and recording in capacitive coupling mode.
Resumo:
In this communication, we describe a new method which has enabled the first patterning of human neurons (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/silicon dioxide substrates. We reveal the details of the nanofabrication processes, cell differentiation and culturing protocols necessary to successfully pattern hNT neurons which are each key aspects of this new method. The benefits in patterning human neurons on silicon chip using an accessible cell line and robust patterning technology are of widespread value. Thus, using a combined technology such as this will facilitate the detailed study of the pathological human brain at both the single cell and network level.
Resumo:
In our previous work we developed a successful protocol to pattern the human hNT neuron (derived from the human teratocarcinoma cell line (hNT)) on parylene-C/SiO2 substrates. This communication, reports how we have successfully managed to pattern the supportive cell to the neuron, the hNT astrocyte, on such substrates. Here we disseminate the nanofabrication, cell differentiation and cell culturing protocols necessary to successfully pattern the first human hNT astrocytes to single cell resolution on parylene-C/SiO2 substrates. This is performed for varying parylene strip widths providing excellent contrast to the SiO2 substrate and elegant single cell isolation at 10μm strip widths. The breakthrough in patterning human cells on a silicon chip has widespread implications and is valuable as a platform technology as it enables a detailed study of the human brain at the cellular and network level.
Resumo:
We use a state-of-the-art ocean general circulation and biogeochemistry model to examine the impact of changes in ocean circulation and biogeochemistry in governing the change in ocean carbon-13 and atmospheric CO2 at the last glacial maximum (LGM). We examine 5 different realisations of the ocean's overturning circulation produced by a fully coupled atmosphere-ocean model under LGM forcing and suggested changes in the atmospheric deposition of iron and phytoplankton physiology at the LGM. Measured changes in carbon-13 and carbon-14, as well as a qualitative reconstruction of the change in ocean carbon export are used to evaluate the results. Overall, we find that while a reduction in ocean ventilation at the LGM is necessary to reproduce carbon-13 and carbon-14 observations, this circulation results in a low net sink for atmospheric CO2. In contrast, while biogeochemical processes contribute little to carbon isotopes, we propose that most of the change in atmospheric CO2 was due to such factors. However, the lesser role for circulation means that when all plausible factors are accounted for, most of the necessary CO2 change remains to be explained. This presents a serious challenge to our understanding of the mechanisms behind changes in the global carbon cycle during the geologic past.
Resumo:
In this study, the atmospheric component of a state-of-the-art climate model (HadGEM2-ES) has been used to investigate the impacts of regional anthropogenic sulphur dioxide emissions on boreal summer Sahel rainfall. The study focuses on the transient response of the West African monsoon (WAM) to a sudden change in regional anthropogenic sulphur dioxide emissions, including land surface feedbacks, but without sea surface temperature (SST) feedbacks. The response occurs in two distinct phases: 1) fast adjustment of the atmosphere on a time scale of days to weeks (up to 3 weeks) through aerosol-radiation and aerosol-cloud interactions with weak hydrological cycle changes and surface feedbacks. 2) adjustment of the atmosphere and land surface with significant local hydrological cycle changes and changes in atmospheric circulation (beyond 3 weeks). European emissions lead to an increase in shortwave (SW) scattering by increased sulphate burden, leading to a decrease in surface downward SW radiation which causes surface cooling over North Africa, a weakening of the Saharan heat low and WAM, and a decrease in Sahel precipitation. In contrast, Asian emissions lead to very little change in sulphate burden over North Africa, but they induce an adjustment of the Walker Circulation which leads again to a weakening of the WAM and a decrease in Sahel precipitation. The responses to European and Asian emissions during the second phase exhibit similar large scale patterns of anomalous atmospheric circulation and hydrological variables, suggesting a preferred response. The results support the idea that sulphate aerosol emissions contributed to the observed decline in Sahel precipitation in the second half of the twentieth century.