43 resultados para Loyal Orange Association of British America
Resumo:
Adiponectin is an adipose tissue specific protein that is decreased in subjects with obesity and type 2 diabetes. The objective of the present study was to examine whether variants in the regulatory regions of the adiponectin gene contribute to type 2 diabetes in Asian Indians. The study comprised of 2,000 normal glucose tolerant (NGT) and 2,000 type 2 diabetic, unrelated subjects randomly selected from the Chennai Urban Rural Epidemiology Study (CURES), in southern India. Fasting serum adiponectin levels were measured by radioimmunoassay. We identified two proximal promoter SNPs (-11377C-->G and -11282T-->C), one intronic SNP (+10211T-->G) and one exonic SNP (+45T-->G) by SSCP and direct sequencing in a pilot study (n = 500). The +10211T-->G SNP alone was genotyped using PCR-RFLP in 4,000 study subjects. Logistic regression analysis revealed that subjects with TG genotype of +10211T-->G had significantly higher risk for diabetes compared to TT genotype [Odds ratio 1.28; 95% Confidence Interval (CI) 1.07-1.54; P = 0.008]. However, no association with diabetes was observed with GG genotype (P = 0.22). Stratification of the study subjects based on BMI showed that the odds ratio for obesity for the TG genotype was 1.53 (95%CI 1.3-1.8; P < 10(-7)) and that for GG genotype, 2.10 (95% CI 1.3-3.3; P = 0.002). Among NGT subjects, the mean serum adiponectin levels were significantly lower among the GG (P = 0.007) and TG (P = 0.001) genotypes compared to TT genotype. Among Asian Indians there is an association of +10211T-->G polymorphism in the first intron of the adiponectin gene with type 2 diabetes, obesity and hypoadiponectinemia.
Resumo:
The objective of this study was to evaluate the association of PPARG coactivator1 alpha (PPARGC1A), peroxisome proliferator activated receptor gamma (PPARG), and uncoupling protein1 (UCP1) gene polymorphisms with the metabolic syndrome (MS) in an Asian Indian population. Nine common polymorphisms were genotyped via polymerase chain reaction restriction fragment length polymorphism and direct sequencing in 950 normal glucose-tolerant subjects and 550 type 2 diabetic subjects, chosen randomly from the Chennai Urban Rural Epidemiological Study, an ongoing population based study in Southern India. Among the 9 polymorphisms examined, only the Thr394Thr variant of the PPARGC1A gene was significantly associated with diabetes and obesity. The genotype frequency of GA of Thr394Thr variant was 16% (138/887) in the nonMS group and 22% (136/613) in the MS group, and this genotype frequency was significantly higher with MS both in males (p = 0.01) and females (p = 0.05), compared to the without-MS group. Logistic regression analysis revealed that the odds ratio for MS for the susceptible genotype GA of Thr394Thr was 1.411 [95% CI: 1.03-1.84, p = 0.012]. In the multiple logistic regression analysis, however, there was no association of this polymorphism as an independent factor with MS. Hence, the study shows that the polymorphisms in the PPARGC1A, PPARG and UCP1 genes are not associated with MS in Asian Indians.
Resumo:
AIMS: Lipoprotein lipase (LPL), a pivotal enzyme in lipoprotein metabolism, catalyzes the hydrolysis of triglycerides of very low-density lipoproteins and chylomicrons. Assuming that the variants in the promoter of the LPL gene may be associated with changes in lipid metabolism leading to obesity and type 2 diabetes, we examined the role of promoter variants (-T93G and -G53C) in the LPL gene in an urban South Indian population. METHODS: The study subjects (619 type 2 diabetic and 731 normal glucose-tolerant (NGT) subjects) were chosen from the Chennai Urban Rural Epidemiology Study, an ongoing population-based study in southern India. The polymorphisms were genotyped using polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP). Linkage disequilibrium (LD) was estimated from the estimates of haplotypic frequencies. RESULTS: The two polymorphisms studied were not in LD. The -T93G was not associated with type 2 diabetes but was associated with obesity. 11.5% of the obese subjects (62/541) had the XG(TG+GG) genotype compared with 6.4% of the nonobese subjects (52/809; P=0.001). The odds ratio for obesity for the XG genotype was 1.766 (95% CI: 1.19-2.63, P=0.005). Subjects with XG genotype also had higher body mass index and waist circumference compared with those with TT genotype. With respect to G53C, subjects with the XC(GC+CC) genotype had 0.527 and 0.531 times lower risk for developing type 2 diabetes and obesity, respectively. CONCLUSIONS: Among Asian Indians, the -T93G SNP of the LPL gene is associated with obesity but not type 2 diabetes, whereas the -G53C SNP appears to be protective against both obesity and type 2 diabetes.
Resumo:
The aim of the study was to assess the relation of adiponectin levels with the metabolic syndrome in Asian Indians, a high-risk group for diabetes and premature coronary artery disease. The study was conducted on 100 (50 men and 50 women) type 2 diabetic subjects and 100 age and sex matched subjects with normal glucose tolerance selected from the Chennai Urban Rural Epidemiology Study, an ongoing population study in Chennai in southern India. Metabolic syndrome was defined using modified Adult Treatment Panel III (ATPIII) guidelines. Adiponectin values were significantly lower in diabetic subjects (men: 5.2 vs 8.3 microg/mL, P=.00l; women: 7.6 vs 11.1 microg/mL, P<.00l) and those with the metabolic syndrome (men: 5.0 vs 6.8 microg/mL, P=.01; women: 6.5 vs 9.9 microg/mL, P=.001) compared with those without. Linear regression analysis revealed adiponectin to be associated with body mass index (P<.05), waist circumference (P<.01), fasting plasma glucose (P=.001), glycated hemoglobin (P<.001), triglycerides (P<.00l), high-density lipoprotein (HDL) cholesterol (P<.001), cholesterol/HDL ratio (P<.00l), and insulin resistance measured by homeostasis assessment model (P<.00l). Factor analysis identified 2 factors: factor 1, negatively loaded with adiponectin and HDL cholesterol and positively loaded with triglycerides, waist circumference, and insulin resistance measured by homeostasis assessment model; and factor 2, with a positive loading of waist circumference and systolic and diastolic blood pressure. Logistic regression analysis revealed adiponectin to be negatively associated with metabolic syndrome (odds ratio [OR], 0.365; P<.001) even after adjusting for age (OR, 0.344; P<.00l), sex (OR, 0.293; P<.001), and body mass index (OR, 0.292; P<.00l). Lower adiponectin levels are associated with the metabolic syndrome per se and several of its components, particularly, diabetes, insulin resistance, and dyslipidemia in this urban south Indian population.
Resumo:
BACKGROUND: Low plasma 25-hydroxyvitamin D (25[OH]D) concentration is associated with high arterial blood pressure and hypertension risk, but whether this association is causal is unknown. We used a mendelian randomisation approach to test whether 25(OH)D concentration is causally associated with blood pressure and hypertension risk. METHODS: In this mendelian randomisation study, we generated an allele score (25[OH]D synthesis score) based on variants of genes that affect 25(OH)D synthesis or substrate availability (CYP2R1 and DHCR7), which we used as a proxy for 25(OH)D concentration. We meta-analysed data for up to 108 173 individuals from 35 studies in the D-CarDia collaboration to investigate associations between the allele score and blood pressure measurements. We complemented these analyses with previously published summary statistics from the International Consortium on Blood Pressure (ICBP), the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, and the Global Blood Pressure Genetics (Global BPGen) consortium. FINDINGS: In phenotypic analyses (up to n=49 363), increased 25(OH)D concentration was associated with decreased systolic blood pressure (β per 10% increase, -0·12 mm Hg, 95% CI -0·20 to -0·04; p=0·003) and reduced odds of hypertension (odds ratio [OR] 0·98, 95% CI 0·97-0·99; p=0·0003), but not with decreased diastolic blood pressure (β per 10% increase, -0·02 mm Hg, -0·08 to 0·03; p=0·37). In meta-analyses in which we combined data from D-CarDia and the ICBP (n=146 581, after exclusion of overlapping studies), each 25(OH)D-increasing allele of the synthesis score was associated with a change of -0·10 mm Hg in systolic blood pressure (-0·21 to -0·0001; p=0·0498) and a change of -0·08 mm Hg in diastolic blood pressure (-0·15 to -0·02; p=0·01). When D-CarDia and consortia data for hypertension were meta-analysed together (n=142 255), the synthesis score was associated with a reduced odds of hypertension (OR per allele, 0·98, 0·96-0·99; p=0·001). In instrumental variable analysis, each 10% increase in genetically instrumented 25(OH)D concentration was associated with a change of -0·29 mm Hg in diastolic blood pressure (-0·52 to -0·07; p=0·01), a change of -0·37 mm Hg in systolic blood pressure (-0·73 to 0·003; p=0·052), and an 8·1% decreased odds of hypertension (OR 0·92, 0·87-0·97; p=0·002). INTERPRETATION: Increased plasma concentrations of 25(OH)D might reduce the risk of hypertension. This finding warrants further investigation in an independent, similarly powered study.
Resumo:
The paper analyses the impact of a priori determinants of biosecurity behaviour of farmers in Great Britain. We use a dataset collected through a stratified telephone survey of 900 cattle and sheep farmers in Great Britain (400 in England and a further 250 in Wales and Scotland respectively) which took place between 25 March 2010 and 18 June 2010. The survey was stratified by farm type, farm size and region. To test the influence of a priori determinants on biosecurity behaviour we used a behavioural economics method, structural equation modelling (SEM) with observed and latent variables. SEM is a statistical technique for testing and estimating causal relationships amongst variables, some of which may be latent using a combination of statistical data and qualitative causal assumptions. Thirteen latent variables were identified and extracted, expressing the behaviour and the underlying determining factors. The variables were: experience, economic factors, organic certification of farm, membership in a cattle/sheep health scheme, perceived usefulness of biosecurity information sources, knowledge about biosecurity measures, perceived importance of specific biosecurity strategies, perceived effect (on farm business in the past five years) of welfare/health regulation, perceived effect of severe outbreaks of animal diseases, attitudes towards livestock biosecurity, attitudes towards animal welfare, influence on decision to apply biosecurity measures and biosecurity behaviour. The SEM model applied on the Great Britain sample has an adequate fit according to the measures of absolute, incremental and parsimonious fit. The results suggest that farmers’ perceived importance of specific biosecurity strategies, organic certification of farm, knowledge about biosecurity measures, attitudes towards animal welfare, perceived usefulness of biosecurity information sources, perceived effect on business during the past five years of severe outbreaks of animal diseases, membership in a cattle/sheep health scheme, attitudes towards livestock biosecurity, influence on decision to apply biosecurity measures, experience and economic factors are significantly influencing behaviour (overall explaining 64% of the variance in behaviour).
Resumo:
Land cover maps at different resolutions and mapping extents contribute to modeling and support decision making processes. Because land cover affects and is affected by climate change, it is listed among the 13 terrestrial essential climate variables. This paper describes the generation of a land cover map for Latin America and the Caribbean (LAC) for the year 2008. It was developed in the framework of the project Latin American Network for Monitoring and Studying of Natural Resources (SERENA), which has been developed within the GOFC-GOLD Latin American network of remote sensing and forest fires (RedLaTIF). The SERENA land cover map for LAC integrates: 1) the local expertise of SERENA network members to generate the training and validation data, 2) a methodology for land cover mapping based on decision trees using MODIS time series, and 3) class membership estimates to account for pixel heterogeneity issues. The discrete SERENA land cover product, derived from class memberships, yields an overall accuracy of 84% and includes an additional layer representing the estimated per-pixel confidence. The study demonstrates in detail the use of class memberships to better estimate the area of scarce classes with a scattered spatial distribution. The land cover map is already available as a printed wall map and will be released in digital format in the near future. The SERENA land cover map was produced with a legend and classification strategy similar to that used by the North American Land Change Monitoring System (NALCMS) to generate a land cover map of the North American continent, that will allow to combine both maps to generate consistent data across America facilitating continental monitoring and modeling
Resumo:
Scope: The use of biomarkers in the objective assessment of dietary intake is a high priority in nutrition research. The aim of this study was to examine pentadecanoic acid (C15:0) and heptadecanoic acid (C17:0) as biomarkers of dairy foods intake. Methods and results: The data used in the present study were obtained as part of the Food4me Study. Estimates of C15:0 and C17:0 from dried blood spots and intakes of dairy from an FFQ were obtained from participants (n=1,180) across 7 countries. Regression analyses were used to explore associations of biomarkers with dairy intake levels and receiver operating characteristic (ROC) analyses were used to evaluate the fatty acids. Significant positive associations were found between C15:0 and total intakes of high-fat dairy products. C15:0 showed good ability to distinguish between low and high consumers of high-fat dairy products. Conclusion: C15:0 can be used as a biomarker of high-fat dairy intake and of specific high-fat dairy products. Both C15:0 and C17:0 performed poorly for total dairy intake highlighting the need for caution when using these in epidemiological studies.
Resumo:
1. Species’ distributions are likely to be affected by a combination of environmental drivers. We used a data set of 11 million species occurrence records over the period 1970–2010 to assess changes in the frequency of occurrence of 673 macro-moth species in Great Britain. Groups of species with different predicted sensitivities showed divergent trends, which we interpret in the context of land-use and climatic changes. 2. A diversity of responses was revealed: 260 moth species declined significantly, whereas 160 increased significantly. Overall, frequencies of occurrence declined, mirroring trends in less species-rich, yet more intensively studied taxa. 3. Geographically widespread species, which were predicted to be more sensitive to land use than to climate change, declined significantly in southern Britain, where the cover of urban and arable land has increased. 4. Moths associated with low nitrogen and open environments (based on their larval host plant characteristics) declined most strongly, which is also consistent with a land-use change explanation. 5. Some moths that reach their northern (leading edge) range limit in southern Britain increased, whereas species restricted to northern Britain (trailing edge) declined significantly, consistent with a climate change explanation. 6. Not all species of a given type behaved similarly, suggesting that complex interactions between species’ attributes and different combinations of environmental drivers determine frequency of occurrence changes. 7. Synthesis and applications. Our findings are consistent with large-scale responses to climatic and land-use changes, with some species increasing and others decreasing. We suggest that land-use change (e.g. habitat loss, nitrogen deposition) and climate change are both major drivers of moth biodiversity change, acting independently and in combination. Importantly, the diverse responses revealed in this species-rich taxon show that multifaceted conservation strategies are needed to minimize negative biodiversity impacts of multiple environmental changes. We suggest that habitat protection, management and ecological restoration can mitigate combined impacts of land-use change and climate change by providing environments that are suitable for existing populations and also enable species to shift their ranges.