34 resultados para Low-cycle fatigue


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Svalgaard (2014) has recently pointed out that the calibration of the Helsinki magnetic observatory’s H component variometer was probably in error in published data for the years 1866–1874.5 and that this makes the interdiurnal variation index based on daily means, IDV(1d), (Lockwood et al., 2013a), and the interplanetary magnetic field strength derived from it (Lockwood et al., 2013b), too low around the peak of solar cycle 11. We use data from the modern Nurmijarvi station, relatively close to the site of the original Helsinki Observatory, to confirm a 30% underestimation in this interval and hence our results are fully consistent with the correction derived by Svalgaard. We show that the best method for recalibration uses the Helsinki Ak(H) and aa indices and is accurate to ±10 %. This makes it preferable to recalibration using either the sunspot number or the diurnal range of geomagnetic activity which we find to be accurate to ±20 %. In the case of Helsinki data during cycle 11, the two recalibration methods produce very similar corrections which are here confirmed using newly digitised data from the nearby St Petersburg observatory and also using declination data from Helsinki. However, we show that the IDV index is, compared to later years, too similar to sunspot number before 1872, revealing independence of the two data series has been lost; either because the geomagnetic data used to compile IDV has been corrected using sunspot numbers, or vice versa, or both. We present corrected data sequences for both the IDV(1d) index and the reconstructed IMF (interplanetary magnetic field).We also analyse the relationship between the derived near-Earth IMF and the sunspot number and point out the relevance of the prior history of solar activity, in addition to the contemporaneous value, to estimating any “floor” value of the near-Earth interplanetary field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The convectively active part of the Madden-Julian Oscillation (MJO) propagates eastward through the warm pool, from the Indian Ocean through the Maritime Continent (the Indonesian archipelago) to the western Pacific. The Maritime Continent's complex topography means the exact nature of the MJO propagation through this region is unclear. Model simulations of the MJO are often poor over the region, leading to local errors in latent heat release and global errors in medium-range weather prediction and climate simulation. Using 14 northern winters of TRMM satellite data it is shown that, where the mean diurnal cycle of precipitation is strong, 80% of the MJO precipitation signal in the Maritime Continent is accounted for by changes in the amplitude of the diurnal cycle. Additionally, the relationship between outgoing long-wave radiation (OLR) and precipitation is weakened here, such that OLR is no longer a reliable proxy for precipitation. The canonical view of the MJO as the smooth eastward propagation of a large-scale precipitation envelope also breaks down over the islands of the Maritime Continent. Instead, a vanguard of precipitation (anomalies of 2.5 mm day^-1 over 10^6 km^2) jumps ahead of the main body by approximately 6 days or 2000 km. Hence, there can be enhanced precipitation over Sumatra, Borneo or New Guinea when the large-scale MJO envelope over the surrounding ocean is one of suppressed precipitation. This behaviour can be accommodated into existing MJO theories. Frictional and topographic moisture convergence and relatively clear skies ahead of the main convective envelope combine with the low thermal inertia of the islands, to allow a rapid response in the diurnal cycle which rectifies onto the lower-frequency MJO. Hence, accurate representations of the diurnal cycle and its scale interaction appear to be necessary for models to simulate the MJO successfully.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Previous studies documented that a distinct southward shift of central-Pacific low-level wind anomalies occurring during the ENSO decaying phase, is caused by an interaction between the Western Pacific annual cycle and El Niño-Southern Oscillation (ENSO) variability. The present study finds that the meridional movement of the central-Pacific wind anomalies appears only during traditional Eastern-Pacific (or EP) El Niño events rather than in Central-Pacific (CP) El Niño events in which sea surface temperature (SST) anomalies are confined to the central Pacific. The zonal structure of ENSO-related SST anomalies therefore has an important effect on meridional asymmetry in the associated atmospheric response and its modulation by the annual cycle. In contrast to EP El Niño events, the SST anomalies of CP El Niño events extend further west towards to the warm pool region with its climatological warm SSTs. In the warm pool region, relatively small SST anomalies thus are able to excite convection anomalies on both sides of the equator, even with a meridionally asymmetric SST background state. Therefore, almost meridionally symmetric precipitation and wind anomalies are observed over the central Pacific during the decaying phase of CP El Niño events. The SST anomaly pattern of La Niña events is similar to CP El Niño events with a reversed sign. Accordingly, no distinct southward displacement of the atmospheric response occurs over the central Pacific during the La Niña decaying phase. These results have important implications for ENSO climate impacts over East Asia, since the anomalous low-level anticyclone over the western North Pacific is an integral part of the annual cycle-modulated ENSO response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

On 14 January 2001, the four Cluster spacecraft passed through the northern magnetospheric mantle in close conjunction to the EISCAT Svalbard Radar (ESR) and approached the post-noon dayside magnetopause over Greenland between 13:00 and 14:00 UT During that interval, a sudden reorganisation of the high-latitude dayside convection pattern accurred after 13:20 UT most likely caused by a direction change of the Solar wind magnetic field. The result was an eastward and poleward directed flow-channel, as monitored by the SuperDARN radar network and also by arrays of ground-based magnetometers in Canada, Greenland and Scandinavia. After an initial eastward and later poleward expansion of the flow-channel between 13:20 and 13:40 UT, the four Cluster spacecraft, and the field line footprints covered by the eastward looking scan cycle of the Sondre Stromfjord incoherent scatter radar were engulfed by cusp-like precipitation with transient magnetic and electric field signatures. In addition, the EISCAT Svalbard Radar detected strong transient effects of the convection reorganisation, a poleward moving precipitation, and a fast ion flow-channel in association with the auroral structures that suddenly formed to the west and north of the radar. From a detailed analysis of the coordinated Cluster and ground-based data, it was found that this extraordinary transient convection pattern, indeed, had moved the cusp precipitation from its former pre-noon position into the late post-noon sector, allowing for the first and quite unexpected encounter of the cusp by the Cluster spacecraft. Our findings illustrate the large amplitude of cusp dynamics even in response to moderate solar wind forcing. The global ground-based data proves to be an invaluable tool to monitor the dynamics and width of the affected magnetospheric regions.