33 resultados para Low-calorie diet


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Whole grain (WG) foods have been suggested to reduce the risk of cardiovascular disease, but studies are inconsistent and effects on cardiovascular risk markers are not clear. Objective The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on overall dietary intake, body composition, blood pressure (BP), blood lipids, blood glucose, gastrointestinal microbiology and gastrointestinal symptoms in healthy, middle-age adults with habitual WG intake < 24 g/d. The trial was registered as ISRCTN36521837. Methods Eligible subjects (12 men, 21 women, aged 40-65 y and BMI 20-35 kg/m2) were identified using food frequency questionnaires and subsequently completed 3-day food diaries (3DFD) to confirm habitual WG consumption. Subjects consumed diets high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain [RG] diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence was achieved by specific dietary advice and provision of a range of cereal food products. The 3DFD, diet compliance diaries and plasma alkylresorcinols (ARs) were used to verify compliance. Results On the WG intervention, consumption increased from 28 g/d to 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and total fiber intake (P < 0.001), without any effect on energy or other macronutrients. While there were no effects on studied parameters, there were trends towards increased 24 h fecal weight (P = 0.08) and reduction in body weight (P = 0.10) and BMI (P = 0.08) during the WG compared to the RG period. Conclusion A combination of dietary advice and provision of commercially available food items enabled subjects with a low-moderate habitual consumption of WG to substantially increase their WG intake, but there was little effect on blood biochemical parameters, body composition, BP, fecal measurements or gut microbiology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alterations in the gut microbiota have been recently linked to oral iron. We conducted two feeding studies including an initial diet-induced iron-depletion period followed by supplementation with nanoparticulate tartrate-modified ferrihydrite (Nano Fe(III): considered bioavailable to host but not bacteria) or soluble ferrous sulfate (FeSO4: considered bioavailable to both host and bacteria). We applied denaturing gradient gel electrophoresis and fluorescence in situ hybridization for study-1 and 454-pyrosequencing of fecal 16S rRNA in study-2. In study-1, the within-community microbial diversity increased with FeSO4 (P = 0.0009) but not with Nano Fe(III) supplementation. This was confirmed in study-2, where we also showed that iron depletion at weaning imprinted significantly lower within- and between-community microbial diversity compared to mice weaned onto the iron-sufficient reference diet (P < 0.0001). Subsequent supplementation with FeSO4 partially restored the within-community diversity (P = 0.006 in relation to the continuously iron-depleted group) but not the between-community diversity, whereas Nano Fe(III) had no effect. We conclude that (1) dietary iron depletion at weaning imprints low diversity in the microbiota that is not, subsequently, easily recovered; (2) in the absence of gastrointestinal disease iron supplementation does not negatively impact the microbiota; and (3) Nano Fe(III) is less available to the gut microbiota.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose Wholegrain (WG) consumption is associated with reduced risk of cardiovascular disease, but clinical data on inflammation and immune function is either conflicting or limited. The objective of this study was to assess the impact of increasing WG consumption to at least 80 g/d on markers of inflammation and glucose metabolism and on phenotypic and functional aspects of the immune system, in healthy, middle-aged adults with low habitual WG intake. Methods Subjects consumed a diet high in WG (> 80 g/d) or low in WG (< 16 g/d, refined grain diet) in a crossover study, with 6-week intervention periods, separated by a 4-week washout. Adherence to the dietary regimes was achieved by dietary advice and provision of a range of food products, with compliance verified through analysis of plasma alkylresorcinols (ARs). Results On the WG intervention, WG consumption reached 168 g/d (P < 0.001), accompanied by an increase in plasma ARs (P < 0.001) and fibre intake (P < 0.001), without affecting other aspects of dietary intake. On the WG arm there were trends for lower ex vivo activation of CD4+ T cells and circulating concentrations of IL-10, C-reactive protein, C-peptide, insulin and plasminogen activator inhibitor-1. The percentage of CD4+ central memory T cells and circulating levels of adipsin tended to increase during the WG intervention. Conclusions Despite the dramatic increase in WG consumption, there were no effects on phenotypic or functional immune parameters, markers of inflammation or metabolic markers.