55 resultados para Liquidus Temperatures
Resumo:
This paper proposes a method for describing the distribution of observed temperatures on any day of the year such that the distribution and summary statistics of interest derived from the distribution vary smoothly through the year. The method removes the noise inherent in calculating summary statistics directly from the data thus easing comparisons of distributions and summary statistics between different periods. The method is demonstrated using daily effective temperatures (DET) derived from observations of temperature and wind speed at De Bilt, Holland. Distributions and summary statistics are obtained from 1985 to 2009 and compared to the period 1904–1984. A two-stage process first obtains parameters of a theoretical probability distribution, in this case the generalized extreme value (GEV) distribution, which describes the distribution of DET on any day of the year. Second, linear models describe seasonal variation in the parameters. Model predictions provide parameters of the GEV distribution, and therefore summary statistics, that vary smoothly through the year. There is evidence of an increasing mean temperature, a decrease in the variability in temperatures mainly in the winter and more positive skew, more warm days, in the summer. In the winter, the 2% point, the value below which 2% of observations are expected to fall, has risen by 1.2 °C, in the summer the 98% point has risen by 0.8 °C. Medians have risen by 1.1 and 0.9 °C in winter and summer, respectively. The method can be used to describe distributions of future climate projections and other climate variables. Further extensions to the methodology are suggested.
Resumo:
We investigate the role of the anthropogenic heat flux on the urban heat island of London. To do this, the time-varying anthropogenic heat flux is added to an urban surface-energy balance parametrization, the Met Office–Reading Urban Surface Exchange Scheme (MORUSES), implemented in a 1 km resolution version of the UK Met Office Unified Model. The anthropogenic heat flux is derived from energy-demand data for London and is specified on the model's 1 km grid; it includes variations on diurnal and seasonal time-scales. We contrast a spring case with a winter case, to illustrate the effects of the larger anthropogenic heat flux in winter and the different roles played by thermodynamics in the different seasons. The surface-energy balance channels the anthropogenic heat into heating the urban surface, which warms slowly because of the large heat capacity of the urban surface. About one third of this additional warming goes into increasing the outgoing long-wave radiation and only about two thirds goes into increasing the sensible heat flux that warms the atmosphere. The anthropogenic heat flux has a larger effect on screen-level temperatures in the winter case, partly because the anthropogenic flux is larger then and partly because the boundary layer is shallower in winter. For the specific winter case studied here, the anthropogenic heat flux maintains a well-mixed boundary layer through the whole night over London, whereas the surrounding rural boundary layer becomes strongly stably stratified. This finding is likely to have important implications for air quality in winter. On the whole, inclusion of the anthropogenic heat flux improves the comparison between model simulations and measurements of screen-level temperature slightly and indicates that the anthropogenic heat flux is beginning to be an important factor in the London urban heat island.
Resumo:
In 1938, Guy Stewart Callendar was the first to demonstrate that the Earth’s land surface was warming. Callendar also suggested that the production of carbon dioxide by the combustion of fossil fuels was responsible for much of this modern change in climate. This short note marks the 75th anniversary of Callendar’s landmark study and demonstrates that his global land temperature estimates agree remarkably well with more recent analyses.
Resumo:
Native enzymes play a significant role in proteolysis of milk during storage. This is significant for heat resistant native enzymes. Plasmin is one of the most heat resistant enzymes found in milk. It has been reported to survive several heat treatments, causing spoilage during storage. The aim of this study was to assess susceptibility of high temperature heated milk to proteolysis by native enzymes. The trinitrobenzene sulphonic acid (TNBS) method was used for this purpose. Raw milk was heated at 110, 120, 130,142°C for 2 s and 85°C for 15 s and milk processed at low temperature (85°C /15s) was selected to mimic pasteurisation. TNBS method confirmed that raw milk and milk processed at 85°C /15s were the most proteolysed, whereas treatment of milk at high temperatures (110, 120, 130 and 142°C for 2 s) inactivated the native enzymes. It may thus be concluded that high temperature processing positively affects proteolysis by lowering its susceptibility to spoilage during storage.
Resumo:
Vegetation and building morphology characteristics are investigated at 19 sites on a north-south LiDAR transect across the megacity of London. Local maxima of mean building height and building plan area density at the city centre are evident. Surprisingly, the mean vegetation height (zv3) is also found to be highest in the city centre. From the LiDAR data various morphological parameters are derived as well as shadow patterns. Continuous images of the effects of buildings and of buildings plus vegetationon sky view factor (Ψ) are derived. A general reduction of Ψ is found, indicating the importance of including vegetation when deriving Ψ in urban areas. The contribution of vegetation to the shadowing at ground level is higher during summer than in autumn. Using these 3D data the influence on urban climate and mean radiant temperature (T mrt ) is calculated with SOLWEIG. The results from these simulations highlight that vegetation can be most effective at reducing heat stress within dense urban environments in summer. The daytime average T mrt is found to be lowest in the densest urban environments due to shadowing; foremost from buildings but also from trees. It is clearly shown that this method could be used to quantify the influence of vegetation on T mrt within the urban environment. The results presented in this paper highlight a number of possible climate sensitive planning practices for urban areas at the local scale (i.e. 102- 5 × 103 m).
Resumo:
The solar and longwave environmental irradiance geometry (SOLWEIG) model simulates spatial variations of 3-D radiation fluxes and mean radiant temperature (T mrt) as well as shadow patterns in complex urban settings. In this paper, a new vegetation scheme is included in SOLWEIG and evaluated. The new shadow casting algorithm for complex vegetation structures makes it possible to obtain continuous images of shadow patterns and sky view factors taking both buildings and vegetation into account. For the calculation of 3-D radiation fluxes and T mrt, SOLWEIG only requires a limited number of inputs, such as global shortwave radiation, air temperature, relative humidity, geographical information (latitude, longitude and elevation) and urban geometry represented by high-resolution ground and building digital elevation models (DEM). Trees and bushes are represented by separate DEMs. The model is evaluated using 5 days of integral radiation measurements at two sites within a square surrounded by low-rise buildings and vegetation in Göteborg, Sweden (57°N). There is good agreement between modelled and observed values of T mrt, with an overall correspondence of R 2 = 0.91 (p < 0.01, RMSE = 3.1 K). A small overestimation of T mrt is found at locations shadowed by vegetation. Given this good performance a number of suggestions for future development are identified for applications which include for human comfort, building design, planning and evaluation of instrument exposure.
Resumo:
The impact of 1973–2005 land use–land cover (LULC) changes on near-surface air temperatures during four recent summer extreme heat events (EHEs) are investigated for the arid Phoenix, Arizona, metropolitan area using the Weather Research and Forecasting Model (WRF) in conjunction with the Noah Urban Canopy Model. WRF simulations were carried out for each EHE using LULC for the years 1973, 1985, 1998, and 2005. Comparison of measured near-surface air temperatures and wind speeds for 18 surface stations in the region show a good agreement between observed and simulated data for all simulation periods. The results indicate consistent significant contributions of urban development and accompanying LULC changes to extreme temperatures for the four EHEs. Simulations suggest new urban developments caused an intensification and expansion of the area experiencing extreme temperatures but mainly influenced nighttime temperatures with an increase of up to 10 K. Nighttime temperatures in the existing urban core showed changes of up to 2 K with the ongoing LULC changes. Daytime temperatures were not significantly affected where urban development replaced desert land (increase by 1 K); however, maximum temperatures increased by 2–4 K when irrigated agricultural land was converted to suburban development. According to the model simulations, urban landscaping irrigation contributed to cooling by 0.5–1 K in maximum daytime as well as minimum nighttime 2-m air temperatures in most parts of the urban region. Furthermore, urban development led to a reduction of the already relatively weak nighttime winds and therefore a reduction in advection of cooler air into the city.
Resumo:
Results from nine coupled ocean-atmosphere simulations have been used to investigate changes in the relationship between the variability of monsoon precipitation over western Africa and tropical sea surface temperatures (SSTs) between the mid-Holocene and the present day. Although the influence of tropical SSTs on the African monsoon is generally overestimated in the control simulations, the models reproduce aspects of the observed modes of variability. Thus, most models reproduce the observed negative correlation between western Sahelian precipitation and SST anomalies in the eastern tropical Pacific, and many of them capture the positive correlation between SST anomalies in the eastern tropical Atlantic and precipitation over the Guinea coastal region. Although the response of individual model to the change in orbital forcing between 6 ka and present differs somewhat, eight of the models show that the strength of the teleconnection between SSTs in the eastern tropical Pacific and Sahelian precipitation is weaker in the mid-Holocene. Some of the models imply that this weakening was associated with a shift towards longer time periods (from 3–5 years in the control simulations toward 4–10 years in the mid-Holocene simulations). The simulated reduction in the teleconnection between eastern tropical Pacific SSTs and Sahelian precipitation appears to be primarily related to a reduction in the atmospheric circulation bridge between the Pacific and West Africa but, depending on the model, other mechanisms such as increased importance of other modes of tropical ocean variability or increased local recycling of monsoonal precipitation can also play a role.
Resumo:
This note describes a simple procedure for removing unphysical temporal discontinuities in ERA-Interim upper stratospheric global mean temperatures in March 1985 and August 1998 that have arisen due to changes in satellite radiance data used in the assimilation. The derived temperature adjustments (offsets) are suitable for use in stratosphere-resolving chemistry-climate models that are nudged (relaxed) to ERA-Interim winds and temperatures. Simulations using a nudged version of the Canadian Middle Atmosphere Model (CMAM) show that the inclusion of the temperature adjustments produces temperature time series that are devoid of the large jumps in 1985 and 1998. Due to its strong temperature dependence, the simulated upper stratospheric ozone is also shown to vary smoothly in time, unlike in a nudged simulation without the adjustments where abrupt changes in ozone occur at the times of the temperature jumps. While the adjustments to the ERA-Interim temperatures remove significant artefacts in the nudged CMAM simulation, spurious transient effects that arise due to water vapour and persist for about 5 yr after the 1979 switch to ERA-Interim data are identified, underlining the need for caution when analysing trends in runs nudged to reanalyses.
Resumo:
Snow provides large seasonal storage of freshwater, and information about the distribution of snow mass as Snow Water Equivalent (SWE) is important for hydrological planning and detecting climate change impacts. Large regional disagreements remain between estimates from reanalyses, remote sensing and modelling. Assimilating passive microwave information improves SWE estimates in many regions but the assimilation must account for how microwave scattering depends on snow stratigraphy. Physical snow models can estimate snow stratigraphy, but users must consider the computational expense of model complexity versus acceptable errors. Using data from the National Aeronautics and Space Administration Cold Land Processes Experiment (NASA CLPX) and the Helsinki University of Technology (HUT) microwave emission model of layered snowpacks, it is shown that simulations of the brightness temperature difference between 19 GHz and 37 GHz vertically polarised microwaves are consistent with Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E) and Special Sensor Microwave Imager (SSM/I) retrievals once known stratigraphic information is used. Simulated brightness temperature differences for an individual snow profile depend on the provided stratigraphic detail. Relative to a profile defined at the 10 cm resolution of density and temperature measurements, the error introduced by simplification to a single layer of average properties increases approximately linearly with snow mass. If this brightness temperature error is converted into SWE using a traditional retrieval method then it is equivalent to ±13 mm SWE (7% of total) at a depth of 100 cm. This error is reduced to ±5.6 mm SWE (3 % of total) for a two-layer model.
Resumo:
Asynchronously coupled atmosphere and ocean general circulation model simulations are used to examine the consequences of changes in the west/east sea-surface temperature (SST) gradient across the equatorial Pacific at the last glacial maximum (LGM). Simulations forced by the CLIMAP SST for the LGM, where the west/east SST gradient across the Pacific is reduced compared to present, produce a reduction in the strength of the trade winds and a decrease in the west/east slope of the equatorial thermocline that is incompatible with thermocline depths newly inferred from foraminiferal assemblages. Stronger-than-present trade winds, and a more realistic simulation of the thermocline slope, are produced when eastern Pacific SSTs are 2°C cooler than western Pacific SSTs. Our study highlights the importance of spatial heterogeneity in tropical SSTs in determining key features of the glacial climate.
Resumo:
Surface temperature is a key aspect of weather and climate, but the term may refer to different quantities that play interconnected roles and are observed by different means. In a community-based activity in June 2012, the EarthTemp Network brought together 55 researchers from five continents to improve the interaction between scientific communities who focus on surface temperature in particular domains, to exploit the strengths of different observing systems and to better meet the needs of different communities. The workshop identified key needs for progress towards meeting scientific and societal requirements for surface temperature understanding and information, which are presented in this community paper. A "whole-Earth" perspective is required with more integrated, collaborative approaches to observing and understanding Earth's various surface temperatures. It is necessary to build understanding of the relationships between different surface temperatures, where presently inadequate, and undertake large-scale systematic intercomparisons. Datasets need to be easier to obtain and exploit for a wide constituency of users, with the differences and complementarities communicated in readily understood terms, and realistic and consistent uncertainty information provided. Steps were also recommended to curate and make available data that are presently inaccessible, develop new observing systems and build capacities to accelerate progress in the accuracy and usability of surface temperature datasets.