32 resultados para Link-homotopy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We formulate an agent-based population model of Escherichia coli cells which incorporates a description of the chemotaxis signalling cascade at the single cell scale. The model is used to gain insight into the link between the signalling cascade dynamics and the overall population response to differing chemoattractant gradients. Firstly, we consider how the observed variation in total (phosphorylated and unphosphorylated) signalling protein concentration affects the ability of cells to accumulate in differing chemoattractant gradients. Results reveal that a variation in total cell protein concentration between cells may be a mechanism for the survival of cell colonies across a wide range of differing environments. We then study the response of cells in the presence of two different chemoattractants.In doing so we demonstrate that the population scale response depends not on the absolute concentration of each chemoattractant but on the sensitivity of the chemoreceptors to their respective concentrations. Our results show the clear link between single cell features and the overall environment in which cells reside.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In spite of trying to understand processes in the same spatial domain, the catchment hydrology and water quality scientific communities are relatively disconnected and so are their respective models. This is emphasized by an inadequate representation of transport processes, in both catchment-scale hydrological and water quality models. While many hydrological models at the catchment scale only account for pressure propagation and not for mass transfer, catchment scale water quality models are typically limited by overly simplistic representations of flow processes. With the objective of raising awareness for this issue and outlining potential ways forward we provide a non-technical overview of (1) the importance of hydrology-controlled transport through catchment systems as the link between hydrology and water quality; (2) the limitations of current generation catchment-scale hydrological and water quality models; (3) the concept of transit times as tools to quantify transport and (4) the benefits of transit time based formulations of solute transport for catchment-scale hydrological and water quality models. There is emerging evidence that an explicit formulation of transport processes, based on the concept of transit times has the potential to improve the understanding of the integrated system dynamics of catchments and to provide a stronger link between catchment-scale hydrological and water quality models.