68 resultados para Linear time invariants
Resumo:
A neural network enhanced self-tuning controller is presented, which combines the attributes of neural network mapping with a generalised minimum variance self-tuning control (STC) strategy. In this way the controller can deal with nonlinear plants, which exhibit features such as uncertainties, nonminimum phase behaviour, coupling effects and may have unmodelled dynamics, and whose nonlinearities are assumed to be globally bounded. The unknown nonlinear plants to be controlled are approximated by an equivalent model composed of a simple linear submodel plus a nonlinear submodel. A generalised recursive least squares algorithm is used to identify the linear submodel and a layered neural network is used to detect the unknown nonlinear submodel in which the weights are updated based on the error between the plant output and the output from the linear submodel. The procedure for controller design is based on the equivalent model therefore the nonlinear submodel is naturally accommodated within the control law. Two simulation studies are provided to demonstrate the effectiveness of the control algorithm.
Resumo:
The relationship between minimum variance and minimum expected quadratic loss feedback controllers for linear univariate discrete-time stochastic systems is reviewed by taking the approach used by Caines. It is shown how the two methods can be regarded as providing identical control actions as long as a noise-free measurement state-space model is employed.
Resumo:
This paper considers the use of radial basis function and multi-layer perceptron networks for linear or linearizable, adaptive feedback control schemes in a discrete-time environment. A close look is taken at the model structure selected and the extent of the resulting parameterization. A comparison is made with standard, nonneural network algorithms, e.g. self-tuning control.
Resumo:
This paper presents a controller design scheme for a priori unknown non-linear dynamical processes that are identified via an operating point neurofuzzy system from process data. Based on a neurofuzzy design and model construction algorithm (NeuDec) for a non-linear dynamical process, a neurofuzzy state-space model of controllable form is initially constructed. The control scheme based on closed-loop pole assignment is then utilized to ensure the time invariance and linearization of the state equations so that the system stability can be guaranteed under some mild assumptions, even in the presence of modelling error. The proposed approach requires a known state vector for the application of pole assignment state feedback. For this purpose, a generalized Kalman filtering algorithm with coloured noise is developed on the basis of the neurofuzzy state-space model to obtain an optimal state vector estimation. The derived controller is applied in typical output tracking problems by minimizing the tracking error. Simulation examples are included to demonstrate the operation and effectiveness of the new approach.
Resumo:
Several non-orthogonal space-time block coding (NO-STBC) schemes have recently been proposed to achieve full rate transmission. Some of these schemes, however, suffer from weak robustness: their channel matrices will become ill conditioned in the case of highly correlated channels (HCC). To address this issue, this paper derives a family of robust NO-STBC schemes for four Tx antennas based on the worst case of HCC. These codes turned out to be a superset of Jafarkhani's quasi-orthogonal STBC codes. A computationally affordable linear decoder is also proposed. Although these codes achieve a similar performance to the non-robust schemes under normal channel conditions, they offer a strong robustness against HCC (although possibly yielding a poorer performance). Finally, computer simulations are presented to verify the algorithm design.
Resumo:
This paper proposes the subspace-based space-time (ST) dual-rate blind linear detectors for synchronous DS/CDMA systems, which can be viewed as the ST extension of our previously presented purely temporal dual-rate blind linear detectors. The theoretical analyses on their performances are also carried out. Finally, the two-stage ST blind detectors are presented, which combine the adaptive purely temporal dual-rate blind MMSE filters with the non-adaptive beamformer. Their adaptive stages with parallel structure converge much faster than the corresponding adaptive ST dual-rate blind MMSE detectors, while having a comparable computational complexity to the latter.
Resumo:
This paper addresses the effects of synchronisation errors (time delay, carrier phase, and carrier frequency) on the performance of linear decorrelating detectors (LDDs). A major effect is that all LDDs require certain degree of power control in the presence of synchronisation errors. The multi-shot sliding window algorithm (SLWA) and hard decision method (HDM) are analysed and their power control requirements are examined. Also, a more efficient one-shot detection scheme, called “hard-decision based coupling cancellation”, is proposed and analysed. These schemes are then compared with the isolation bit insertion (IBI) approach in terms of power control requirements.
Resumo:
This paper addresses the problem of tracking line segments corresponding to on-line handwritten obtained through a digitizer tablet. The approach is based on Kalman filtering to model linear portions of on-line handwritten, particularly, handwritten numerals, and to detect abrupt changes in handwritten direction underlying a model change. This approach uses a Kalman filter framework constrained by a normalized line equation, where quadratic terms are linearized through a first-order Taylor expansion. The modeling is then carried out under the assumption that the state is deterministic and time-invariant, while the detection relies on double thresholding mechanism which tests for a violation of this assumption. The first threshold is based on an approach of layout kinetics. The second one takes into account the jump in angle between the past observed direction of layout and its current direction. The method proposed enables real-time processing. To illustrate the methodology proposed, some results obtained from handwritten numerals are presented.
Resumo:
The tap-length, or the number of the taps, is an important structural parameter of the linear MMSE adaptive filter. Although the optimum tap-length that balances performance and complexity varies with scenarios, most current adaptive filters fix the tap-length at some compromise value, making them inefficient to implement especially in time-varying scenarios. A novel gradient search based variable tap-length algorithm is proposed, using the concept of the pseudo-fractional tap-length, and it is shown that the new algorithm can converge to the optimum tap-length in the mean. Results of computer simulations are also provided to verify the analysis.
Resumo:
An algorithm for solving nonlinear discrete time optimal control problems with model-reality differences is presented. The technique uses Dynamic Integrated System Optimization and Parameter Estimation (DISOPE), which achieves the correct optimal solution in spite of deficiencies in the mathematical model employed in the optimization procedure. A version of the algorithm with a linear-quadratic model-based problem, implemented in the C+ + programming language, is developed and applied to illustrative simulation examples. An analysis of the optimality and convergence properties of the algorithm is also presented.
Resumo:
We study the heat, linear Schrodinger and linear KdV equations in the domain l(t) < x < ∞, 0 < t < T, with prescribed initial and boundary conditions and with l(t) a given differentiable function. For the first two equations, we show that the unknown Neumann or Dirichlet boundary value can be computed as the solution of a linear Volterra integral equation with an explicit weakly singular kernel. This integral equation can be derived from the formal Fourier integral representation of the solution. For the linear KdV equation we show that the two unknown boundary values can be computed as the solution of a system of linear Volterra integral equations with explicit weakly singular kernels. The derivation in this case makes crucial use of analyticity and certain invariance properties in the complex spectral plane. The above Volterra equations are shown to admit a unique solution.
Resumo:
Identifying a periodic time-series model from environmental records, without imposing the positivity of the growth rate, does not necessarily respect the time order of the data observations. Consequently, subsequent observations, sampled in the environmental archive, can be inversed on the time axis, resulting in a non-physical signal model. In this paper an optimization technique with linear constraints on the signal model parameters is proposed that prevents time inversions. The activation conditions for this constrained optimization are based upon the physical constraint of the growth rate, namely, that it cannot take values smaller than zero. The actual constraints are defined for polynomials and first-order splines as basis functions for the nonlinear contribution in the distance-time relationship. The method is compared with an existing method that eliminates the time inversions, and its noise sensitivity is tested by means of Monte Carlo simulations. Finally, the usefulness of the method is demonstrated on the measurements of the vessel density, in a mangrove tree, Rhizophora mucronata, and the measurement of Mg/Ca ratios, in a bivalve, Mytilus trossulus.
Resumo:
New ways of combining observations with numerical models are discussed in which the size of the state space can be very large, and the model can be highly nonlinear. Also the observations of the system can be related to the model variables in highly nonlinear ways, making this data-assimilation (or inverse) problem highly nonlinear. First we discuss the connection between data assimilation and inverse problems, including regularization. We explore the choice of proposal density in a Particle Filter and show how the ’curse of dimensionality’ might be beaten. In the standard Particle Filter ensembles of model runs are propagated forward in time until observations are encountered, rendering it a pure Monte-Carlo method. In large-dimensional systems this is very inefficient and very large numbers of model runs are needed to solve the data-assimilation problem realistically. In our approach we steer all model runs towards the observations resulting in a much more efficient method. By further ’ensuring almost equal weight’ we avoid performing model runs that are useless in the end. Results are shown for the 40 and 1000 dimensional Lorenz 1995 model.
Resumo:
The role of structure and molecular weight in fermentation selectivity in linear α-1,6 dextrans and dextrans with α-1,2 branching was investigated. Fermentation by gut bacteria was determined in anaerobic, pH-controlled fecal batch cultures after 36 h. Inulin (1%, wt/vol), which is a known prebiotic, was used as a control. Samples were obtained at 0, 10, 24, and 36 h of fermentation for bacterial enumeration by fluorescent in situ hybridization and short-chain fatty acid analyses. The gas production of the substrate fermentation was investigated in non-pH-controlled, fecal batch culture tubes after 36 h. Linear and branched 1-kDa dextrans produced significant increases in Bifidobacterium populations. The degree of α-1,2 branching did not influence the Bifidobacterium populations; however, α-1,2 branching increased the dietary fiber content, implying a decrease in digestibility. Other measured bacteria were unaffected by the test substrates except for the Bacteroides-Prevotella group, the growth levels of which were increased on inulin and 6- and 70-kDa dextrans, and the Faecalibacterium prausnitzii group, the growth levels of which were decreased on inulin and 1-kDa dextrans. A considerable increase in short-chain fatty acid concentration was measured following the fermentation of all dextrans and inulin. Gas production rates were similar among all dextrans tested but were significantly slower than that for inulin. The linear 1-kDa dextran produced lower total gas and shorter time to attain maximal gas production compared to those of the 70-kDa dextran (branched) and inulin. These findings indicate that dextrans induce a selective effect on the gut flora, short-chain fatty acids, and gas production depending on their length.
Resumo:
Sol-gel derived inorganic materials are of interest as hosts for non-linear optically active guest molecules and they offer particular advantages in the field of non-linear optics. Orientationally ordered glasses have been prepared using a sol-gel system based on tetramethoxysilane, methyltrimethoxysilane and a non-linear optical chromophore Disperse Red 1. The novel technique of photo-induced poling was used to generate enhanced levels of polar order. The level of enhancement is strongly dependent on the extent of gelation and an optimum preparation time of ∼100 h led to an enhancement factor of ∼5. Films prepared in this manner exhibited a high stability of the polar order.