41 resultados para Lighter trivalent lanthanides
Resumo:
Global climate and weather models tend to produce rainfall that is too light and too regular over the tropical ocean. This is likely because of convective parametrizations, but the problem is not well understood. Here, distributions of precipitation rates are analyzed for high-resolution UK Met Office Unified Model simulations of a 10 day case study over a large tropical domain (∼20°S–20°N and 42°E–180°E). Simulations with 12 km grid length and parametrized convection have too many occurrences of light rain and too few of heavier rain when interpolated onto a 1° grid and compared with Tropical Rainfall Measuring Mission (TRMM) data. In fact, this version of the model appears to have a preferred scale of rainfall around 0.4 mm h−1 (10 mm day−1), unlike observations of tropical rainfall. On the other hand, 4 km grid length simulations with explicit convection produce distributions much more similar to TRMM observations. The apparent preferred scale at lighter rain rates seems to be a feature of the convective parametrization rather than the coarse resolution, as demonstrated by results from 12 km simulations with explicit convection and 40 km simulations with parametrized convection. In fact, coarser resolution models with explicit convection tend to have even more heavy rain than observed. Implications for models using convective parametrizations, including interactions of heating and moistening profiles with larger scales, are discussed. One important implication is that the explicit convection 4 km model has temperature and moisture tendencies that favour transitions in the convective regime. Also, the 12 km parametrized convection model produces a more stable temperature profile at its extreme high-precipitation range, which may reduce the chance of very heavy rainfall. Further study is needed to determine whether unrealistic precipitation distributions are due to some fundamental limitation of convective parametrizations or whether parametrizations can be improved, in order to better simulate these distributions.
Resumo:
A series of bis-triazinylphenanthroline ligands (BTPhens) was synthesized by modifying the triazine substituents. It was found that varying these substituents altered the solubilities of the ligands in a number of non-polar solvents. Thus C5-BTPhen showed significantly higher solubility in octanol than C1-BTPhen. The high solubility of C5-BTPhen and its complexes was exploited to facilitate the NMR titration experiments. These experiments shown that the dominant species in solution were the 1:2 complexes [Ln(III)(BTPhen)2], even at high Ln concentrations, and that the relative stability of the 2:1 to 1:1 BTPhen-Ln complexes varied with different lanthanides. C5-BTPhen therefore shows considerable promise for a once-through selective actinide separation process.
Resumo:
The synthesis, lanthanide complexation and solvent extraction of An(III) and Ln(III) radiotracers from nitric acid solutions by a pre-organized, phenanthroline-derived bis-triazine ligand CyMe4-BTPhen are described. It was found that the ligand separated Am(III) and Cm(III) from the lanthanides with remarkably high efficiency, high selectivity, and faster extraction kinetics compared to its 2,2’-bipyridine counterpart CyMe4-BTBP. The origins of the ligands extraction properties were established by a combination of solvent extraction experiments, X-ray crystallography, kinetics and surface tension measurements and lanthanide NMR spectroscopy.
Resumo:
Two members of the tetradentate N-donor ligand families 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) and 2,9-bis(1,2,4-triazin-3-yl)-1,10-phenanthroline (BTPhen) currently being developed for separating actinides from lanthanides have been studied. It has been confirmed that CyMe4-BTPhen 2 has faster complexation kinetics than CyMe4-BTBP 1. The values for the HOMO−LUMO gap of 2 are comparable with those of CyMe4-BTBP 1 for which the HOMO−LUMO gap was previously calculated to be 2.13 eV. The displacement of BTBP from its bis-lanthanum(III) complex by BTPhen was observed by NMR, and constitutes the only direct evidence for the greater thermodynamic stability of the complexes of BTPhen. NMR competition experiments suggest the following order of bis-complex stability: 1:2 bis-BTPhen complex ≥ heteroleptic BTBP/BTPhen 1:2 bis-complex > 1:2 bis-BTBP complex. Kinetics studies on some bis-triazine N-donor ligands using the stopped-flow technique showed a clear relationship between the rates of metal ion complexation and the degree to which the ligand is preorganized for metal binding. The BTBPs must overcome a significant (ca. 12 kcal mol−1) energy barrier to rotation about the central biaryl C−C axis in order to achieve the cis−cis conformation that is required to form a complex, whereas the cis−cis conformation is fixed in the BTPhens. Complexation thermodynamics and kinetics studies in acetonitrile show subtle differences between the thermodynamic stabilities of the complexes formed, with similar stability constants being found for both ligands. The first crystal structure of a 1:1 complex of CyMe4-BTPhen 2 with Y(NO3)3 is also reported. The metal ion is 10- coordinate being bonded to the tetradentate ligand 2 and three bidentate nitrate ions. The tetradentate ligand is nearly planar with angles between consecutive rings of 16.4(2)°, 6.4(2)°, 9.7(2)°, respectively.
Resumo:
A number of recent studies demonstrate that bilinguals with languages that differ in grammatical and lexical categories may shift their cognitive representation of those categories towards that of monolingual speakers of their second language. The current paper extended that investigation to the domain of colour in Greek–English bilinguals with different levels of bilingualism, and English monolinguals. Greek differentiates the blue region of colour space into a darker shade called ble and a lighter shade called ghalazio. Results showed a semantic shift of category prototypes with level of bilingualism and acculturation, while the way bilinguals judged the perceptual similarity between within- and cross-category stimulus pairs depended strongly on the availability of the relevant colour terms in semantic memory, and the amount of time spent in the L2-speaking country. These results suggest that cognition is tightly linked to semantic memory for specific linguistic categories, and to cultural immersion in the L2-speaking country.
Resumo:
Polymers with the ability to heal themselves could provide access to materials with extended lifetimes in a wide range of applications such as surface coatings, automotive components and aerospace composites. Here we describe the synthesis and characterisation of two novel, stimuli-responsive, supramolecular polymer blends based on π-electron-rich pyrenyl residues and π-electron-deficient, chain-folding aromatic diimides that interact through complementary π–π stacking interactions. Different degrees of supramolecular “cross-linking” were achieved by use of divalent or trivalent poly(ethylene glycol)-based polymers featuring pyrenyl end-groups, blended with a known diimide–ether copolymer. The mechanical properties of the resulting polymer blends revealed that higher degrees of supramolecular “cross-link density” yield materials with enhanced mechanical properties, such as increased tensile modulus, modulus of toughness, elasticity and yield point. After a number of break/heal cycles, these materials were found to retain the characteristics of the pristine polymer blend, and this new approach thus offers a simple route to mechanically robust yet healable materials.
Resumo:
This paper outlines some of the physics opportunities available with the GSI RISING active stopper and presents preliminary results from an experiment aimed at performing beta-delayed gamma-ray spectroscopic studies in heavy-neutron-rich nuclei produced following the projectile fragmentation of a 1 GeV per nucleon 208Pb primary beam. The energy response of the silicon active stopping detector for both heavy secondary fragments and beta-particles is demonstrated and preliminary results on the decays of neutron-rich Tantalum (Ta) to Tungsten (W) isotopes are presented as examples of the potential of this technique to allow new structural studies in hitherto experimentally unreachable heavy, neutron-rich nuclei. The resulting spectral information inferred from excited states in the tungsten daughter nuclei are compared with results from axially symmetric Hartree–Fock calculations of the nuclear shape and suggest a change in ground state structure for the N = 116 isotone 190W compared to the lighter isotopes of this element.
Resumo:
Changes in diet carbohydrate amount and type (i.e., starch vs. fiber) and dietary oil supplements can affect ruminant methane emissions. Our objectives were to measure methane emissions, whole-tract digestibility, and energy and nitrogen utilization from growing dairy cattle at 2 body weight (BW) ranges, fed diets containing either high maize silage (MS) or high grass silage (GS), without or with supplemental oil from extruded linseed (ELS). Four Holstein-Friesian heifers aged 13 mo (BW range from start to finish of 382 to 526 kg) were used in experiment 1, whereas 4 lighter heifers aged 12 mo (BW range from start to finish of 292 to 419 kg) were used in experiment 2. Diets were fed as total mixed rations with forage dry matter (DM) containing high MS or high GS and concentrates in proportions (forage:concentrate, DM basis) of either 75:25 (experiment 1) or 60:40 (experiment 2), respectively. Diets were supplemented without or with ELS (Lintec[AU1: Add manufacturer name and location.]; 260 g of oil/ kg of DM) at 6% of ration DM. Each experiment was a 4 × 4 Latin square design with 33-d periods, with measurements during d 29 to 33 while animals were housed in respiration chambers. Heifers fed MS at a heavier BW (experiment 1) emitted 20% less methane per unit of DM intake (yield) compared with GS (21.4 vs. 26.6, respectively). However, when repeated with heifers of a lower BW (experiment 2), methane yield did not differ between the 2 diets (26.6 g/kg of DM intake). Differences in heifer BW had no overall effect on methane emissions, except when expressed as grams per kilogram of digestible organic matter (OMD) intake (32.4 vs. 36.6, heavy vs. light heifers). Heavier heifers fed MS in experiment 1 had a greater DM intake (9.4 kg/d) and lower OMD (755 g/kg), but no difference in N utilization (31% of N intake) compared with heifers fed GS (7.9 kg/d and 799 g/kg, respectively). Tissue energy retention was nearly double for heifers fed MS compared with GS in experiment 1 (15 vs. 8% of energy intake, respectively). Heifers fed MS in experiment 2 had similar DM intake (7.2 kg/d) and retention of energy (5% of intake energy) and N (28% of N intake), compared with GS-fed heifers, but OMD was lower (741 vs. 765 g/kg, respectively). No effect of ELS was noted on any of the variables measured, irrespective of animal BW, and this was likely due to the relatively low amount of supplemental oil provided. Differences in heifer BW did not markedly influence dietary effects on methane emissions. Differences in methane yield were attributable to differences in dietary starch and fiber composition associated with forage type and source.
Resumo:
We report the synthesis and evaluation of a novel hydrophilic 6,6′-bis(1,2,4-triazin-3-yl)-2,2′-bipyridine (BTBP) ligand containing carboxylate groups as a selective aqueous complexing agent for the minor actinides over lanthanides. The novel ligand is able to complex and separate Am(III) from Eu(III) in alkaline solutions selectively.
Resumo:
Urban greening solutions such as green roofs help improve residents’ thermal comfort and building insulation. However, not all plants provide the same level of cooling. This is partially due to differences in plant structure and function, including different mechanisms that plants employ to regulate leaf temperature. Ranking of multiple leaf/plant traits involved in the regulation of leaf temperature (and, consequently, plants’ cooling ‘service’) is not well understood. We therefore investigated the relative importance of water loss, leaf colour, thickness and extent of pubescence for the regulation of leaf temperature, in the context of species for semi-extensive green roofs. Leaf temperature were measured with an infrared imaging camera in a range of contrasting genotypes within three plant genera (Heuchera, Salvia and Sempervivum). In three glasshouse experiments (each evaluating three or four genotypes of each genera) we varied water availability to the plants and assessed how leaf temperature altered depending on water loss and specific leaf traits. Greatest reductions in leaf temperature were closely associated with higher water loss. Additionally, in non-succulents (Heuchera, Salvia), lighter leaf colour and longer hair length (on pubescent leaves) both contributed to reduced leaf temperature. However, in succulent Sempervivum, colour/pubescence made no significant contribution; leaf thickness and water loss rate were the key regulating factors. We propose that this can lead to different plant types having significantly different potentials for cooling. We suggest that maintaining transpirational water loss by sustainable irrigation and selecting urban plants with favourable morphological traits is the key to maximising thermal benefits provided by applications such as green roofs.
Resumo:
In analysis of complex nuclear forensic samples containing lanthanides, actinides and matrix elements, rapid selective extraction of Am/Cm for quantification is challenging, in particular due the difficult separation of Am/Cm from lanthanides. Here we present a separation process for Am/Cm(III) which is achieved using a combination of AG1-X8 chromatography followed by Am/Cm extraction with a triazine ligand. The ligands tested in our process were CyMe4-BTPhen, CyMe4- BTBP, CA-BTP and CA-BTPhen. Our process allows for purification and quantification of Am and Cm (recoveries 80%–100%) and other major actinides in < 2d without the use of multiple columns or thiocyanate. The process is unaffected by high level Ca(II)/Fe(III)/Al(III) (10mg mL−1) and thus requires little pre-treatment of samples.