56 resultados para Learning of the multiplication
Resumo:
The Self-Organizing Map (SOM) is a popular unsupervised neural network able to provide effective clustering and data visualization for multidimensional input datasets. In this paper, we present an application of the simulated annealing procedure to the SOM learning algorithm with the aim to obtain a fast learning and better performances in terms of quantization error. The proposed learning algorithm is called Fast Learning Self-Organized Map, and it does not affect the easiness of the basic learning algorithm of the standard SOM. The proposed learning algorithm also improves the quality of resulting maps by providing better clustering quality and topology preservation of input multi-dimensional data. Several experiments are used to compare the proposed approach with the original algorithm and some of its modification and speed-up techniques.
Resumo:
Recently major processor manufacturers have announced a dramatic shift in their paradigm to increase computing power over the coming years. Instead of focusing on faster clock speeds and more powerful single core CPUs, the trend clearly goes towards multi core systems. This will also result in a paradigm shift for the development of algorithms for computationally expensive tasks, such as data mining applications. Obviously, work on parallel algorithms is not new per se but concentrated efforts in the many application domains are still missing. Multi-core systems, but also clusters of workstations and even large-scale distributed computing infrastructures provide new opportunities and pose new challenges for the design of parallel and distributed algorithms. Since data mining and machine learning systems rely on high performance computing systems, research on the corresponding algorithms must be on the forefront of parallel algorithm research in order to keep pushing data mining and machine learning applications to be more powerful and, especially for the former, interactive. To bring together researchers and practitioners working in this exciting field, a workshop on parallel data mining was organized as part of PKDD/ECML 2006 (Berlin, Germany). The six contributions selected for the program describe various aspects of data mining and machine learning approaches featuring low to high degrees of parallelism: The first contribution focuses the classic problem of distributed association rule mining and focuses on communication efficiency to improve the state of the art. After this a parallelization technique for speeding up decision tree construction by means of thread-level parallelism for shared memory systems is presented. The next paper discusses the design of a parallel approach for dis- tributed memory systems of the frequent subgraphs mining problem. This approach is based on a hierarchical communication topology to solve issues related to multi-domain computational envi- ronments. The forth paper describes the combined use and the customization of software packages to facilitate a top down parallelism in the tuning of Support Vector Machines (SVM) and the next contribution presents an interesting idea concerning parallel training of Conditional Random Fields (CRFs) and motivates their use in labeling sequential data. The last contribution finally focuses on very efficient feature selection. It describes a parallel algorithm for feature selection from random subsets. Selecting the papers included in this volume would not have been possible without the help of an international Program Committee that has provided detailed reviews for each paper. We would like to also thank Matthew Otey who helped with publicity for the workshop.
Resumo:
Environmental policy in the United Kingdom (UK) is witnessing a shift from command-and-control approaches towards more innovation-orientated environmental governance arrangements. These governance approaches are required which create institutions which support actors within a domain for learning not only about policy options, but also about their own interests and preferences. The need for construction actors to understand, engage and influence this process is critical to establishing policies which support innovation that satisfies each constituent’s needs. This capacity is particularly salient in an era where the expanding raft of environmental regulation is ushering in system-wide innovation in the construction sector. In this paper, the Code for Sustainable Homes (the Code) in the UK is used to demonstrate the emergence and operation of these new governance arrangements. The Code sets out a significant innovation challenge for the house-building sector with, for example, a requirement that all new houses must be zero-carbon by 2016. Drawing upon boundary organisation theory, the journey from the Code as a government aspiration, to the Code as a catalyst for the formation of the Zero Carbon Hub, a new institution, is traced and discussed. The case study reveals that the ZCH has demonstrated boundary organisation properties in its ability to be flexible to the needs and constraints of its constituent actors, yet robust enough to maintain and promote a common identity across regulation and industry boundaries.
Resumo:
In the recent years, the area of data mining has been experiencing considerable demand for technologies that extract knowledge from large and complex data sources. There has been substantial commercial interest as well as active research in the area that aim to develop new and improved approaches for extracting information, relationships, and patterns from large datasets. Artificial neural networks (NNs) are popular biologically-inspired intelligent methodologies, whose classification, prediction, and pattern recognition capabilities have been utilized successfully in many areas, including science, engineering, medicine, business, banking, telecommunication, and many other fields. This paper highlights from a data mining perspective the implementation of NN, using supervised and unsupervised learning, for pattern recognition, classification, prediction, and cluster analysis, and focuses the discussion on their usage in bioinformatics and financial data analysis tasks. © 2012 Wiley Periodicals, Inc.
Resumo:
Massive open online courses (MOOCs) are a recent addition to the range of online learning options. Since 2008, MOOCs have been run by a variety of public and elite universities, especially in North America. Many academics have taken interest in MOOCs recognising the potential to deliver education around the globe on an unprecedented scale; some of these academics are taking a research-oriented perspective and academic papers describing their research are starting to appear in the traditional media of peer reviewed publications. This paper presents a systematic review of the published MOOC literature (2008-2012): Forty-five peer reviewed papers are identified through journals, database searches, searching the Web, and chaining from known sources to form the base for this review. We believe this is the first effort to systematically review literature relating to MOOCs, a fairly recent but massively popular phenomenon with a global reach. The review categorises the literature into eight different areas of interest, introductory, concept, case studies, educational theory, technology, participant focussed, provider focussed, and other, while also providing quantitative analysis of publications according to publication type, year of publication, and contributors. Future research directions guided by gaps in the literature are explored.
Resumo:
This paper discusses the development of the Virtual Construction Simulator (VCS) 3 - a simulation game-based educational tool for teaching construction schedule planning and management. The VCS3 simulation game engages students in learning the concepts of planning and managing construction schedules through goal driven exploration, employed strategies, and immediate feedback. Through the planning and simulation mode, students learn the difference between the as-planned and as-built schedules resulting from varying factors such as resource availability, weather and labor productivity. This paper focuses on the development of the VCS3 and its construction physics model. Challenges inherent in the process of identifying variables and their relationships to reliably represent and simulate the dynamic nature of planning and managing of construction projects are also addressed.
Resumo:
Contrary to the widespread belief that people are positively motivated by reward incentives, some studies have shown that performance-based extrinsic reward can actually undermine a person's intrinsic motivation to engage in a task. This “undermining effect” has timely practical implications, given the burgeoning of performance-based incentive systems in contemporary society. It also presents a theoretical challenge for economic and reinforcement learning theories, which tend to assume that monetary incentives monotonically increase motivation. Despite the practical and theoretical importance of this provocative phenomenon, however, little is known about its neural basis. Herein we induced the behavioral undermining effect using a newly developed task, and we tracked its neural correlates using functional MRI. Our results show that performance-based monetary reward indeed undermines intrinsic motivation, as assessed by the number of voluntary engagements in the task. We found that activity in the anterior striatum and the prefrontal areas decreased along with this behavioral undermining effect. These findings suggest that the corticobasal ganglia valuation system underlies the undermining effect through the integration of extrinsic reward value and intrinsic task value.
Resumo:
Since the Dearing Report .1 there has been an increased emphasis on the development of employability and transferable (‘soft’) skills in undergraduate programmes. Within STEM subject areas, recent reports concluded that universities should offer ‘greater and more sustainable variety in modes of study to meet the changing demands of industry and students’.2 At the same time, higher education (HE) institutions are increasingly conscious of the sensitivity of league table positions on employment statistics and graduate destinations. Modules that are either credit or non-credit bearing are finding their way into the core curriculum at HE. While the UK government and other educational bodies argue the way forward over A-level reform, universities must also meet the needs of their first year cohorts in terms of the secondary to tertiary transition and developing independence in learning.
Resumo:
Grassroots innovations emerge as networks generating innovative solutions for climate change adaptation and mitigation. However, it is unclear if grassroots innovations can be successful in responding to climate change. Little evidence exists on replication, international comparisons are rare, and research tends to overlook discontinued responses in favour of successful ones. We take the Transition Movement as a case study of a rapidly spreading transnational grassroots network, and include both active and non-active local transition initiatives. We investigate the replication of grassroots innovations in different contexts with the aim to uncover general patterns of success and failure, and identify questions for future research. An online survey was carried out in 23 countries (N=276). The data analysis entailed testing the effect of internal and contextual factors of success as drawn from the existing literature, and the identification of clusters of transition initiatives with similar internal and contextual factor configurations. Most transition initiatives consider themselves successful. Success is defined along the lines of social connectivity and empowerment, and external environmental impact. We find that less successful transition initiatives might underestimate the importance of contextual factors and material resources in influencing success. We also find that their diffusion is linked to the combination of local-global learning processes, and that there is an incubation period during which a transition initiative is consolidated. Transition initiatives seem capable of generalising organisational principles derived from unique local experiences that seem to be effective in other local contexts. However, the geographical locations matter with regard to where transition initiatives take root and the extent of their success, and ‘place attachment’ may have a role in the diffusion of successful initatives. We suggest that longitudinal comparative studies can advance our understanding in this regard, as well as inform the changing nature of the definition of success at different stages of grassroots innovation development, and the dynamic nature of local and global linkages.
Resumo:
Neutral cues that predict emotional events (emotional harbingers) acquire emotional properties and attract attention. Given the importance of emotional harbingers for future survival, it is desirable to flexibly learn new facts about emotional harbingers when needed. However, recent research revealed that it is harder to learn new associations for emotional harbingers than cues that predict non-emotional events (neutral harbingers). In the current study, we addressed whether this impaired association learning for emotional harbingers is altered by one’s awareness of the contingencies between cues and emotional outcomes. Across 3 studies, we found that one’s awareness of the contingencies determines subsequent association learning of emotional harbingers. Emotional harbingers produced worse association learning than neutral harbingers when people were not aware of the contingencies between cues and emotional outcomes, but produced better association learning when people were aware of the contingencies. These results suggest that emotional harbingers do not always suffer from impaired association learning and can show facilitated learning depending on one’s contingency awareness.
Resumo:
Recent studies suggest that learning and using a second language (L2) can affect brain structure, including the structure of white matter (WM) tracts. This observation comes from research looking at early and older bilingual individuals who have been using both their first and second languages on an everyday basis for many years. This study investigated whether young, highly immersed late bilinguals would also show structural effects in the WM that can be attributed to everyday L2 use, irrespective of critical periods or the length of L2 learning. Our Tract-Based Spatial Statistics analysis revealed higher fractional anisotropy values for bilinguals vs. monolinguals in several WM tracts that have been linked to language processing and in a pattern closely resembling the results reported for older and early bilinguals. We propose that learning and actively using an L2 after childhood can have rapid dynamic effects on WM structure, which in turn may assist in preserving WM integrity in older age.