322 resultados para Latitude.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper discusses how variations in the pattern of convective plasma flows should beincluded in self-consistent time-dependent models of the coupled ionosphere-thermosphere system. The author shows how these variations depend upon the mechanism by which the solar wind flow excites the convection. The modelling of these effects is not just of relevance to the polar ionosphere. This is because the influence of convection is not confined to high latitudes: the resultant heating and composition changes in the thermosphere are communicated to lower latitudes by the winds which are also greatly modified by the plasma convection. These thermospheric changes alter the global distribution of plasma by modulatingthe rates of the chemical reactions which areresponsible for the loss of plasma. Hence the modelling of these high-latitude processes is of relevanceto the design and operation of HF communication, radar and navigation systems worldwide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The papers by Winser et al. [(1990) J. atmos. terr. Phys.52, 501] and Häggström and Collis [(1990) J. atmos. terr. Phys.52, 519] used plasma flows and ion temperatures, as measured by the EISCAT tristatic incoherent scatter radar, to investigate changes in the ion composition of the ionospheric F-layer at high latitudes, in response to increases in the speed of plasma convection. These studies reported that the ion composition rapidly changed from mainly O+ to almost completely (>90%) molecular ions, following rapid increases in ion drift speed by >1 km s−1. These changes appeared inconsisent with theoretical considerations of the ion chemistry, which could not account for the large fractions of molecular ions inferred from the obsevations. In this paper, we discuss two causes of this discrepancy. First, we reevaluate the theoretical calculations for chemical equilibrium and show that, if we correct the derived temperatures for the effect of the molecular ions, and if we employ more realistic dependences of the reaction rates on the ion temperature, the composition changes derived for the faster convection speeds can be explained. For the Winser et al. observations with the radar beam at an aspect angle of ϕ = 54.7° to the geomagnetic field, we now compute a change to 89% molecular ions in < 2 min, in response to the 3 km s−1 drift. This is broadly consistent with the observations. But for the two cases considered by Häggström and Collis, looking along the field line (ϕ = 0°), we compute the proportion of molecular ions to be only 4 and 16% for the observed plasma drifts of 1.2 and 1.6 km s−1, respectively. These computed proportions are much smaller than those derived experimentally (70 and 90%). We attribute the differences to the effects of non-Maxwellian, anisotropic ion velocity distribution functions. We also discuss the effect of ion composition changes on the various radar observations that report anisotropies of ion temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A pass of the AMPTE-UKS satellite through the low-latitude boundary layer (LLBL) at 8:30 MLT is studied in detail. The magnetosheath field is predominantly northward. It is shown that multiple transitions through part or all of the layer of antisunward flow lead to overestimation of both the voltage across this layer and its width. The voltage is estimated to be only about 3 kV and this implies that the full LLBL is about 1200 km thick, consistent with previous studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The asymmetries in the convective flows, current systems, and particle precipitation in the high-latitude dayside ionosphere which are related to the equatorial plane components of the interplanetary magnetic field (IMF) are discussed in relation to the results of several recent observational studies. It is argued that all of the effects reported to date which are ascribed to the y component of the IMF can be understood, at least qualitatively, in terms of a simple theoretical picture in which the effects result from the stresses exerted on the magnetosphere consequent on the interconnection of terrestrial and interplanetary fields. In particular, relaxation under the action of these stresses allows, in effect, a partial penetration of the IMF into the magnetospheric cavity, such that the sense of the expected asymmetry effects on closed field lines can be understood, to zeroth order, in terms of the “dipole plus uniform field” model. In particular, in response to IMF By, the dayside cusp should be displaced in longitude about noon in the same sense as By in the northern hemisphere, and in the opposite sense to By in the southern hemisphere, while simultaneously the auroral oval as a whole should be shifted in the dawn-dusk direction in the opposite sense with respect to By. These expected displacements are found to be consistent with recently published observations. Similar considerations lead to the suggestion that the auroral oval may also undergo displacements in the noon-midnight direction which are associated with the x component of the IMF. We show that a previously published study of the position of the auroral oval contains strong initial evidence for the existence of this effect. However, recent results on variations in the latitude of the cusp are more ambiguous. This topic therefore requires further study before definitive conclusions can be drawn.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The implications of polar cap expansions, contractions and movements for empirical models of high-latitude plasma convection are examined. Some of these models have been generated by directly averaging flow measurements from large numbers of satellite passes or radar scans; others have employed more complex means to combine data taken at different times into large-scale patterns of flow. In all cases, the models have implicitly adopted the assumption that the polar cap is in steady state: they have all characterized the ionospheric flow in terms of the prevailing conditions (e.g. the interplanetary magnetic field and/or some index of terrestrial magnetic activity) without allowance for their history. On long enough time scales, the polar cap is indeed in steady state but on time scales shorter than a few hours it is not and can oscillate in size and position. As a result, the method used to combine the data can influence the nature of the convection reversal boundary and the transpolar voltage in the derived model. This paper discusses a variety of effects due to time-dependence in relation to some ionospheric convection models which are widely applied. The effects are shown to be varied and to depend upon the procedure adopted to compile the model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combined optical and radar observations of two breakup-like auroral events near the polar cap boundary, within 74–76° MLAT and 1210 – 1240 UT (roughly 1540 – 1610 MLT) on 9 Jan. 1989 are reported. A two-component structure of the auroral phenomenon is indicated, with a local intensification of the pre-existing arc as well as a separate, tailward moving discrete auroral event on the poleward side of the background aurora, close to the reversal between well-defined zones of sunward and tailward ion flows. The all-sky TV observations do not indicate a connection between the two components, which also show different optical spectral composition. The 16 MLT background arc is located on sunward convecting field lines, as opposed to the 12–14 MLT auroral emission observed on this day. Although the magnetospheric plasma source (s) of the 16 MLT events are not easily identified from these ground-based data alone, it is suggested that the lower and higher latitude components, may map to the plasma sheet boundary layer and along open field lines to the magnetopause boundary, respectively. The events occur at the time of enhancements of westward ionospheric ion flow and corresponding eastward electrojet current south of 74° MLAT. Thus, they seem to be very significant events, involving periodic (10 min period), tailward moving filaments of field-aligned current/discrete auroral emission at the 16 MLT polar cap boundary.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Data are presented for a nighttime ion heating event observed by the EISCAT radar on 16 December 1988. In the experiment, the aspect angle between the radar beam and the geomagnetic field was fixed at 54.7°, which avoids any ambiguity in derived ion temperature caused by anisotropy in the ion velocity distribution function. The data were analyzed with an algorithm which takes account of the non-Maxwellian line-of-sight ion velocity distribution. During the heating event, the derived spectral distortion parameter (D∗) indicated that the distribution function was highly distorted from a Maxwellian form when the ion drift increased to 4 km s−1. The true three-dimensional ion temperature was used in the simplified ion balance equation to compute the ion mass during the heating event. The ion composition was found to change from predominantly O4 to mainly molecular ions. A theoretical analysis of the ion composition, using the MSIS86 model and published values of the chemical rate coefficients, accounts for the order-of-magnitude increase in the atomic/molecular ion ratio during the event, but does not successfully explain the very high proportion of molecular ions that was observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recent observations of ionospheric flows by ground-based radars, in particular by the European Incoherent Scatter (EISCAT) facility using the “Polar” experiment, together with previous analyses of the response of geomagnetic disturbance to variations of the interplanetary magnetic field (IMF), suggest that convection in the high-latitude ionosphere should be considered to be the sum of two intrinsically time-dependent patterns, one driven by solar wind-magnetosphere coupling at the dayside magnetopause, the other by the release of energy in the geomagnetic tail (mainly by dayside and nightside reconnection, respectively). The flows driven by dayside coupling are largest on the dayside, where they usually dominate, are associated with an expanding polar cap area, and are excited and decay on ∼10-min time scales following southward and northward turnings of the IMF, respectively. The latter finding indicates that the production of new open flux at the dayside magnetopause excites magnetospheric and ionospheric flow only for a short interval, ∼10 min, such that the flow driven by this source subsequently decays on this time scale unless maintained by the production of more open flux tubes. Correspondingly, the flows excited by the release of energy in the tail, mainly during substorms, are largest on the nightside, are associated with a contracting polar cap boundary, and are excited on ∼1-hour time scales following a southward turn of the IMF. In general, the total ionospheric flow will be the sum of the flows produced by these two sources, such that due to their different response times to changes in the IMF, considerable variations in the flow pattern can occur for a given direction and strength of the IMF. Consequently, the ionospheric electric field cannot generally be regarded as arising from a simple mapping of the solar wind electric field along open flux tubes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EISCAT radar has provided data for a comprehensive study of the high-latitude trough in electron concentration, which occurs in the auroral zone. In this paper the characteristics of the trough are illustrated, the method of its formation is outlined and important features of the trough are described. A large upward velocity along the geomagnetic field line is shown to play a significant role in the formation of the trough. The large ion-neutral difference velocities which initiate the formation of the trough may also drive the plasma into a non-thermal state which should be taken into account during the analysis of incoherent scatter data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Calculations using a numerical model of the convection dominated high latitude ionosphere are compared with observations made by EISCAT as part of the UK-POLAR Special Programme. The data used were for 24–25 October 1984, which was characterized by an unusually steady IMF, with Bz < 0 and By > 0; in the calculations it was assumed that a steady IMF implies steady convection conditions. Using the electric field models of Heppner and Maynard (1983) appropriate to By > 0 and precipitation data taken from Spiroet al. (1982), we calculated the velocities and electron densities appropriate to the EISCAT observations. Many of the general features of the velocity data were reproduced by the model. In particular, the phasing of the change from eastward to westward flow in the vicinity of the Harang discontinuity, flows near the dayside throat and a region of slow flow at higher latitudes near dusk were well reproduced. In the afternoon sector modelled velocity values were significantly less than those observed. Electron density calculations showed good agreement with EISCAT observations near the F-peak, but compared poorly with observations near 211 km. In both cases, the greatest disagreement occurred in the early part of the observations, where the convection pattern was poorly known and showed some evidence of long term temporal change. Possible causes for the disagreement between observations and calculations are discussed and shown to raise interesting and, as yet, unresolved questions concerning the interpretation of the data. For the data set used, the late afternoon dip in electron density observed near the F-peak and interpreted as the signature of the mid-latitude trough is well reproduced by the calculations. Calculations indicate that it does not arise from long residence times of plasma on the nightside, but is the signature of a gap between two major ionization sources, viz. photoionization and particle precipitation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The time scale of the response of the high-latitude dayside ionospheric flow to changes in the North-South component of the interplanetary magnetic field (IMF) has been investigated by examining the time delays between corresponding sudden changes. Approximately 40 h of simultaneous IMF and ionospheric flow data have been examined, obtained by the AMPTE-UKS and -IRM spacecraft and the EISCAT “Polar” experiment, respectively, in which 20 corresponding sudden changes have been identified. Ten of these changes were associated with southward turnings of the IMF, and 10 with northward turnings. It has been found that the corresponding flow changes occurred simultaneously over the whole of the “Polar” field-of-view, extending more than 2° in invariant latitude, and that the ionospheric response delay following northward turnings is the same as that following southward turnings, though the form of the response is different in the two cases. The shortest response time, 5.5 ± 3.2 min, is found in the early- to mid-afternoon sector, increasing to 9.5 ± 3.0 min in the mid-morning sector, and to 9.5 ± 3.1 min near to dusk. These times represent the delays in the appearance of perturbed flows in the “Polar” field-of-view following the arrival of IMF changes at the subsolar magnetopause. Overall, the results agree very well with those derived by Etemadi et al. (1988, Planet. Space Sci.36, 471) from a general cross-correlation analysis of the IMF Bz and “Polar” beam-swinging vector flow data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1984 and 1985 a series of experiments was undertaken in which dayside ionospheric flows were measured by the EISCAT “Polar” experiment, while observations of the solar wind and interplanetary magnetic field (IMF) were made by the AMPTE UKS and IRM spacecraft upstream from the Earth's bow shock. As a result, 40 h of simultaneous data were acquired, which are analysed in this paper to investigate the relationship between the ionospheric flow and the North-South (Bz) component of the IMF. The ionospheric flow data have 2.5 min resolution, and cover the dayside local time sector from ∼ 09:30 to ∼ 18:30 M.L.T. and the latitude range from 70.8° to 74.3°. Using cross-correlation analysis it is shown that clear relationships do exist between the ionospheric flow and IMF Bz, but that the form of the relations depends strongly on latitude and local time. These dependencies are readily interpreted in terms of a twinvortex flow pattern in which the magnitude and latitudinal extent of the flows become successively larger as Bz becomes successively more negative. Detailed maps of the flow are derived for a range of Bz values (between ± 4 nT) which clearly demonstrate the presence of these effects in the data. The data also suggest that the morning reversal in the East-West component of flow moves to earlier local times as Bz, declines in value and becomes negative. The correlation analysis also provides information on the ionospheric response time to changes in IMF Bz, it being found that the response is very rapid indeed. The most rapid response occurs in the noon to mid-afternoon sector, where the westward flows of the dusk cell respond with a delay of 3.9 ± 2.2 min to changes in the North-South field at the subsolar magnetopause. The flows appear to evolve in form over the subsequent ~ 5 min interval, however, as indicated by the longer response times found for the northward component of flow in this sector (6.7 ±2.2 min), and in data from earlier and later local times. No evidence is found for a latitudinal gradient in response time; changes in flow take place coherently in time across the entire radar field-of-view.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a first overview of flows in the high latitude ionosphere observed at 15 s resolution using the U.K.-Polar EISCAT experiment. Data are described from experiments conducted on two days, 27 October 1984 and 29 August 1985, which together span the local times between about 0200 and 2130MLT and cover five different regions of ionospheric flow. With increasing local time, these are: the dawn auroral zone flow cell, the dayside region of low background flows equatorward of the flow cells, the dusk auroral zone flow cell, the boundary region between the dusk auroral zone and the polar cap, and the evening polar cap. Flows in both the equatorward and poleward portions of the auroral zone cells appear to be relatively smooth, while in the central region of high speed flow considerable variations are generally present. These have the form of irregular fluctuations on a wide range of time scales in the early morning dawn cell, and impulsive wave-like variations with periods of a few minutes in the afternoon dusk cell. In the dayside region between the flow cells, the ionosphere is often essentially stagnant for long intervals, but low amplitude ULF waves with a period of about 5 min can also occur and persist for many cycles. These conditions are punctuated at one to two hour intervals by sudden ‘flow burst’ events with impulsively generated damped wave trains. Initial burst flows are generally directed poleward and can peak at line-of-sight speeds in excess of 1 km s^{−1} after perhaps 45 s. Flows in the polar cap are reasonably smooth on time scales of a few minutes and show no evidence for the presence of ULF waves. Under most, but not all, of the above conditions, the beam-swinging algorithm used to determine background vector flows should produce meaningful results. Comparison of these flow data with simultaneous plasma and magnetic field measurements in the solar wind, made by the AMPTE IRM and UKS spacecraft, emphasizes the strong control exerted on high latitude flows by the north-south component of the IMF.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper surveys the results of simultaneous observations by the EISCAT incoherent scatter radar and the AMPTE-UKS satellite, made during three periods in September and October 1984, when AMPTE-UKS was in the solar wind on the dayside of the Earth and the UK-POLAR EISCAT experiment was measuring ionospheric parameters at invariant latitudes 70.8–75.0°. A total of 42 h of EISCAT convection velocity data, with 2.5 min resolution, were obtained, together with 28 h of simultaneous 5 s resolution AMPTE-UKS observations of the solar wind and interplanetary magnetic field (IMF). The general features of the AMPTE-UKS data are described in Section 2 and those of the EISCAT data are described in Sections 3 and 4. The main subjects discussed are the form of the plasma convection patterns and their dependence on all three components of the IMF (Section 5), the ionospheric response to abrupt changes in the IMF (Section 6), in particular a sharp ‘southward turning’ of the IMF on 27 October 1984, and a crossing of an IMF sector boundary. Section 7 describes ‘short lived rapid flow burst’, which are believed to be related to flux transfer events at the magnetopause.