64 resultados para Late Glacial Maximum
Resumo:
Mineral dust aerosols in the atmosphere have the potential to affect the global climate by influencing the radiative balance of the atmosphere and the supply of micronutrients to the ocean. Ice and marine sediment cores indicate that dust deposition from the atmosphere was at some locations 2–20 times greater during glacial periods, raising the possibility that mineral aerosols might have contributed to climate change on glacial-interglacial time scales. To address this question, we have used linked terrestrial biosphere, dust source, and atmospheric transport models to simulate the dust cycle in the atmosphere for current and last glacial maximum (LGM) climates. We obtain a 2.5-fold higher dust loading in the entire atmosphere and a twenty-fold higher loading in high latitudes, in LGM relative to present. Comparisons to a compilation of atmospheric dust deposition flux estimates for LGM and present in marine sediment and ice cores show that the simulated flux ratios are broadly in agreement with observations; differences suggest where further improvements in the simple dust model could be made. The simulated increase in high-latitude dustiness depends on the expansion of unvegetated areas, especially in the high latitudes and in central Asia, caused by a combination of increased aridity and low atmospheric [CO2]. The existence of these dust source areas at the LGM is supported by pollen data and loess distribution in the northern continents. These results point to a role for vegetation feedbacks, including climate effects and physiological effects of low [CO2], in modulating the atmospheric distribution of dust.
Resumo:
∆14Catm has been estimated as 420 ± 80‰ (IntCal09) during the Last Glacial Maximum (LGM) compared to preindustrial times (0‰), but mechanisms explaining this difference are not yet resolved. ∆14Catm is a function of both cosmogenic production in the high atmosphere and of carbon cycling and partitioning in the Earth system. 10Be-based reconstructions show a contribution of the cosmogenic production term of only 200 ± 200‰ in the LGM. The remaining 220‰ have thus to be explained by changes in the carbon cycle. Recently, Bouttes et al. (2010, 2011) proposed to explain most of the difference in pCO2atm and δ13C between glacial and interglacial times as a result of brine-induced ocean stratification in the Southern Ocean. This mechanism involves the formation of very saline water masses that contribute to high carbon storage in the deep ocean. During glacial times, the sinking of brines is enhanced and more carbon is stored in the deep ocean, lowering pCO2atm. Moreover, the sinking of brines induces increased stratification in the Southern Ocean, which keeps the deep ocean well isolated from the surface. Such an isolated ocean reservoir would be characterized by a low ∆14C signature. Evidence of such 14C-depleted deep waters during the LGM has recently been found in the Southern Ocean (Skinner et al. 2010). The degassing of this carbon with low ∆14C would then reduce ∆14Catm throughout the deglaciation. We have further developed the CLIMBER-2 model to include a cosmogenic production of 14C as well as an interactive atmospheric 14C reservoir. We investigate the role of both the sinking of brine and cosmogenic production, alongside iron fertilization mechanisms, to explain changes in ∆14Catm during the last deglaciation. In our simulations, not only is the sinking of brine mechanism consistent with past ∆14C data, but it also explains most of the differences in pCO2atm and ∆14Catm between the LGM and preindustrial times. Finally, this study represents the first time to our knowledge that a model experiment explains glacial-interglacial differences in pCO2atm, δ13C, and ∆14C together with a coherent LGM climate.
Resumo:
Fire activity has varied globally and continuously since the last glacial maximum (LGM) in response to long-term changes in global climate and shorter-term regional changes in climate, vegetation, and human land use. We have synthesized sedimentary charcoal records of biomass burning since the LGM and present global maps showing changes in fire activity for time slices during the past 21,000 years (as differences in charcoal accumulation values compared to pre-industrial). There is strong broad-scale coherence in fire activity after the LGM, but spatial heterogeneity in the signals increases thereafter. In North America, Europe and southern South America, charcoal records indicate less-than-present fire activity during the deglacial period, from 21,000 to ∼11,000 cal yr BP. In contrast, the tropical latitudes of South America and Africa show greater-than-present fire activity from ∼19,000 to ∼17,000 cal yr BP and most sites from Indochina and Australia show greater-than-present fire activity from 16,000 to ∼13,000 cal yr BP. Many sites indicate greater-than-present or near-present activity during the Holocene with the exception of eastern North America and eastern Asia from 8,000 to ∼3,000 cal yr BP, Indonesia and Australia from 11,000 to 4,000 cal yr BP, and southern South America from 6,000 to 3,000 cal yr BP where fire activity was less than present. Regional coherence in the patterns of change in fire activity was evident throughout the post-glacial period. These complex patterns can largely be explained in terms of large-scale climate controls modulated by local changes in vegetation and fuel load
Resumo:
We describe the creation of a data set describing changes related to the presence of ice sheets, including ice-sheet extent and height, ice-shelf extent, and the distribution and elevation of ice-free land at the Last Glacial Maximum (LGM), which were used in LGM experiments conducted as part of the fifth phase of the Coupled Modelling Intercomparison Project (CMIP5) and the third phase of the Palaeoclimate Modelling Intercomparison Project (PMIP3). The CMIP5/PMIP3 data sets were created from reconstructions made by three different groups, which were all obtained using a model-inversion approach but differ in the assumptions used in the modelling and in the type of data used as constraints. The ice-sheet extent in the Northern Hemisphere (NH) does not vary substantially between the three individual data sources. The difference in the topography of the NH ice sheets is also moderate, and smaller than the differences between these reconstructions (and the resultant composite reconstruction) and ice-sheet reconstructions used in previous generations of PMIP. Only two of the individual reconstructions provide information for Antarctica. The discrepancy between these two reconstructions is larger than the difference for the NH ice sheets, although still less than the difference between the composite reconstruction and previous PMIP ice-sheet reconstructions. Although largely confined to the ice-covered regions, differences between the climate response to the individual LGM reconstructions extend over the North Atlantic Ocean and Northern Hemisphere continents, partly through atmospheric stationary waves. Differences between the climate response to the CMIP5/PMIP3 composite and any individual ice-sheet reconstruction are smaller than those between the CMIP5/PMIP3 composite and the ice sheet used in the last phase of PMIP (PMIP2).
Resumo:
The climates of the mid-Holocene (MH), 6,000 years ago, and of the Last Glacial Maximum (LGM), 21,000 years ago, have extensively been simulated, in particular in the framework of the Palaeoclimate Modelling Intercomparion Project. These periods are well documented by paleo-records, which can be used for evaluating model results for climates different from the present one. Here, we present new simulations of the MH and the LGM climates obtained with the IPSL_CM5A model and compare them to our previous results obtained with the IPSL_CM4 model. Compared to IPSL_CM4, IPSL_CM5A includes two new features: the interactive representation of the plant phenology and marine biogeochemistry. But one of the most important differences between these models is the latitudinal resolution and vertical domain of their atmospheric component, which have been improved in IPSL_CM5A and results in a better representation of the mid-latitude jet-streams. The Asian monsoon’s representation is also substantially improved. The global average mean annual temperature simulated for the pre-industrial (PI) period is colder in IPSL_CM5A than in IPSL_CM4 but their climate sensitivity to a CO2 doubling is similar. Here we show that these differences in the simulated PI climate have an impact on the simulated MH and LGM climatic anomalies. The larger cooling response to LGM boundary conditions in IPSL_CM5A appears to be mainly due to differences between the PMIP3 and PMIP2 boundary conditions, as shown by a short wave radiative forcing/feedback analysis based on a simplified perturbation method. It is found that the sensitivity computed from the LGM climate is lower than that computed from 2 × CO2 simulations, confirming previous studies based on different models. For the MH, the Asian monsoon, stronger in the IPSL_CM5A PI simulation, is also more sensitive to the insolation changes. The African monsoon is also further amplified in IPSL_CM5A due to the impact of the interactive phenology. Finally the changes in variability for both models and for MH and LGM are presented taking the example of the El-Niño Southern Oscillation (ENSO), which is very different in the PI simulations. ENSO variability is damped in both model versions at the MH, whereas inconsistent responses are found between the two versions for the LGM. Part 2 of this paper examines whether these differences between IPSL_CM4 and IPSL_CM5A can be distinguished when comparing those results to palaeo-climatic reconstructions and investigates new approaches for model-data comparisons made possible by the inclusion of new components in IPSL_CM5A.
Resumo:
The Last Glacial Maximum (LGM) exhibits different large-scale atmospheric conditions compared to present-day climate due to altered boundary conditions. The regional atmospheric circulation and associated precipitation patterns over Europe are characterized for the first time with a weather typing approach (circulation weather types, CWT) for LGM paleoclimate simulations. The CWT approach is applied to four representative regions across Europe. While the CWTs over Western Europe are prevailing westerly for both present-day and LGM conditions, considerable differences are identified elsewhere: Southern Europe experienced more frequent westerly and cyclonic CWTs under LGM conditions, while Central and Eastern Europe was predominantly affected by southerly and easterly flow patterns. Under LGM conditions, rainfall is enhanced over Western Europe but is reduced over most of Central and Eastern Europe. These differences are explained by changing CWT frequencies and evaporation patterns over the North Atlantic Ocean. The regional differences of the CWTs and precipitation patterns are linked to the North Atlantic storm track, which was stronger over Europe in all considered models during the LGM, explaining the overall increase of the cyclonic CWT. Enhanced evaporation over the North Atlantic leads to higher moisture availability over the ocean. Despite the overall cooling during the LGM, this explains the enhanced precipitation over southwestern Europe, particularly Iberia. This study links large-scale atmospheric dynamics to the regional circulation and associated precipitation patterns and provides an improved regional assessment of the European climate under LGM conditions.
Resumo:
A U-series calcrete chronology has been constructed for three Late Quaternary terrace units, termed the D1, D2 and D3 terraces in age descending order, from the Rio Aguas river system of the Sorbas basin, southeast Spain. The D1 terrace formed between 30,300 +/- 4400 year BP and 12,140 +/- 360 year BP, correlating well with the Last Glacial Maximum when rates of sediment supply would have increased greatly, because of higher rates of weathering, reduced vegetation cover and weak soil development. The D2 terrace formed between 12,800 +/- 1100 year BP and 9,600 +/- 530 year BP, correlating well with the Younger Dryas event. The D3 terrace could only be poorly constrained to the early Holocene and no unequivocal cause could be assigned to this period of aggradation. The sedimentology and geomorphology of the D2 terrace suggests, however, that the aggradation of this unit was a response to diapirism/karstic processes occurring within the underlying Messinian gypsum strata and the subsequent damming of the Aguas system. Therefore, despite its coincident occurrence with the Younger Dryas, aggradation of the D2 terrace is unrelated to climate change. The style of this response, controlled predominantly by the characteristics of the underlying bedrock, makes correlating the terrace record of the Aguas with other systems in the Mediterranean unreliable. This study, therefore, highlights the problems of correlating fluvial sequences in regions of variable tectonics, climatic history and bedrock geology and emphasises the need to properly understand the main controls on individual fluvial systems before any attempt is made to correlate their depositional histories. (C) 2004 Elsevier Ltd. All rights reserved.
Resumo:
Rockshelter Baaz in the Damascus region of Syria provided a variety of botanical remains from the Late Pleistocene and Early Holocene period. These remains provide new information about the vegetation evolution in this region. The earliest occupational levels correspond with a moisture peak during the Late Pleistocene, between ca. 34-32 kyr b.p., when pine expanded. The next occupations took place during extreme arid conditions, ca. 23-21 kyr b.p., and probably during the Last Glacial Maximum when a steppe vegetation was established. The occupation level of the Younger Dryas, represented by Natufian remains, suggests that the area had been covered by almond-pistachio steppe, similar to later periods of the Early Holocene, and was probably located just outside the range of dense wild cereal stands. There is no drastic impact of the Younger Dryas visible on the vegetation in the botanical remains. The lack of fruits and seeds at Baaz indicates that the site was more likely to have been a temporary hunting post rather than a plant processing site for much of its history. It is ideally suited to this purpose because of its location over the Jaba'deen Pass and the associated springs. However, archaeological remains from the Natufian period, suggest that the site was more permanently occupied during this time.
Resumo:
Quantitative estimates of temperature and precipitation change during the late Pleistocene and Holocene have been difficult to obtain for much of the lowland Neotropics. Using two published lacustrine pollen records and a climate-vegetation model based on the modern abundance distributions of 154 Neotropical plant families, we demonstrate how family-level counts of fossil pollen can be used to quantitatively reconstruct tropical paleoclimate and provide needed information on historic patterns of climatic change. With this family-level analysis, we show that one area of the lowland tropics, northeastern Bolivia, experienced cooling (1–3 °C) and drying (400 mm/yr), relative to present, during the late Pleistocene (50,000–12,000 calendar years before present [cal. yr B.P.]). Immediately prior to the Last Glacial Maximum (LGM, ca. 21,000 cal. yr B.P.), we observe a distinct transition from cooler temperatures and variable precipitation to a period of warmer temperatures and relative dryness that extends to the middle Holocene (5000–3000 cal. yr B.P.). This prolonged reduction in precipitation occurs against the backdrop of increasing atmospheric CO2 concentrations, indicating that the presence of mixed savanna and dry-forest communities in northeastern Bolivia durng the LGM was not solely the result of low CO2 levels, as suggested previously, but also lower precipitation. The results of our analysis demonstrate the potential for using the distribution and abundance structure of modern Neotropical plant families to infer paleoclimate from the fossil pollen record.
Resumo:
During the Last Glacial Maximum, the climate was substantially colder and the carbon cycle was clearly different from the late Holocene. According to proxy data deep oceanic δ13C was very low, and the atmospheric CO2 concentration also reduced. Several mechanisms have been proposed to explain these changes, but none can fully explain the data, especially the very low deep ocean δ13C values. Oceanic core data show that the deep ocean was very cold and salty, which would lead to enhanced deep ocean stratification. We show that such an enhanced stratification in the coupled climate model CLIMBER-2 helps get very low deep oceanic δ13C values. Indeed the simulated δ13C reaches values as low as −0.8‰ in line with proxy data evidences. Moreover it increases the oceanic carbon reservoir leading to a small, yet robust, atmospheric CO2 drop of approximately 10 ppm.
Resumo:
Two previous reconstructions of palaeovegetation across the whole of China were performed using a simple classification of plant functional types (PFTs). Now a more explicit, global PFT classification scheme has been developed, and a substantial number of additional pollen records have become available. Here we apply the global scheme of PFTs to a comprehensive set of pollen records available from China to test the applicability of the global scheme of PFTs in China, and to obtain a well-founded reconstruction of changing palaeovegetation patterns. A total of 806 pollen surface samples, 188 mid-Holocene (MH, 6000 14C yr BP) and 50 last glacial maximum (LGM, 18,000 14C yr BP) pollen records were used to reconstruct vegetation patterns in China, based on a new global classification system of PFTs and a standard numerical technique for biome assignment (biomization). The biome reconstruction based on pollen surface samples showed convincing agreement with present potential natural vegetation. Coherent patterns of change in biome distribution between MH, LGM and present are observed. In the MH, cold and cool-temperate evergreen needleleaf forests and mixed forests, temperate deciduous broadleaf forest, and warm-temperate evergreen broadleaf and mixed forest in eastern China were shifted northward by 200–500 km. Cold-deciduous forest in northeastern China was replaced by cold evergreen needleleaf forest while in central northern China, cold-deciduous forest was present at some sites now occupied by temperate grassland and desert. The forest–grassland boundary was 200–300 km west of its present position. Temperate xerophytic shrubland, temperate grassland and desert covered a large area on the Tibetan Plateau, but the area of tundra was reduced. Treeline was 300–500 m higher than present in Tibet. These changes imply generally warmer winters, longer growing seasons and more precipitation during the MH. Westward shifts of the forest–shrubland–grassland and grassland–desert boundaries imply greater moisture availability in the MH, consistent with a stronger summer monsoon. During the LGM, in contrast, cold-deciduous forest, cool-temperate evergreen needleleaf forest, cool mixed forests, warm-temperate evergreen broadleaf and mixed forest in eastern China were displaced to the south by 300–1000 km, while temperate deciduous broadleaf forest, pure warm-temperate evergreen forest, tropical semi-evergreen and evergreen broadleaf forests were restricted or absent from the mainland of southern China, implying colder winters than present. Strong shifts of temperate xerophytic shrubland, temperate grassland and desert to the south and east in northern and western China and on the Tibetan Plateau imply drier conditions than present.
Resumo:
New compilations of African pollen and lake data are compared with climate (CCM1, NCAR, Boulder) and vegetation (BIOME 1.2, GSG, Lund) simulations for the last glacial maximum (LGM) and early to mid-Holocene (EMH). The simulated LGM climate was ca 4°C colder and drier than present, with maximum reduction in precipitation in semi-arid regions. Biome simulations show lowering of montane vegetation belts and expansion of southern xerophytic associations, but no change in the distribution of deserts and tropical rain forests. The lakes show LGM conditions similar or drier than present throughout northern and tropical Africa. Pollen data indicate lowering of montane vegetation belts, the stability of the Sahara, and a reduction of rain forest. The paleoenvironmental data are consistent with the simulated changes in temperature and moisture budgets, although they suggest the climate model underestimates equatorial aridity. EMH simulations show temperatures slightly less than present and increased monsoonal precipitation in the eastern Sahara and East Africa. Biome simulations show an upward shift of montane vegetation belts, fragmentation of xerophytic vegetation in southern Africa, and a major northward shift of the southern margin of the eastern Sahara. The lakes indicate conditions wetter than present across northern Africa. Pollen data show an upward shift of the montane forests, the northward shift of the southern margin of the Sahara, and a major extension of tropical rain forest. The lake and pollen data confirm monsoon expansion in eastern Africa, but the climate model fails to simulate the wet conditions in western Africa.
Resumo:
Lake records from northern Eurasia show regionally coherent patterns of changes during the late Quaternary. Lakes peripheral to the Scandinavian ice sheet were lower than those today but lakes in the Mediterranean zone were high at the glacial maximum, reflecting the dominance of glacial anticyclonic conditions in northern Europe and a southward shift of the Westerlies. The influence of the glacial anticyclonic circulation attenuated through the late glacial period, and the Westerlies gradually shifted northward, such that drier conditions south of the ice sheet were confined to a progressively narrower zone and the Mediterranean became drier. The early Holocene shows a gradual shift to conditions wetter than present in central Asia, associated with the expanded Asian monsoon, and in the Mediterranean, in response to local, monsoon-type circulation. There is no evidence of mid-continental aridity in northern Eurasia during the mid-Holocene. In contrast, the circum-Baltic region was drier, reflecting the increased incidence of blocking anticyclones centered on Scandinavia in summer. There is a gradual transition to modern conditions after ca. 5000 yr B.P. Although these broad-scale patterns are interrupted by shorter term fluctuations, the long-term trends in lake behavior show a clear response to changes in insolation and glaciation.
Resumo:
This paper presents evidence of the discovery of a new Middle Pleistocene site in central southern England, with undisturbed evidence of hominin occupation well-dated to an interstadial towards the end of Marine Isotope Stage 8, c. 250,000 BP. The site consists of a preserved remnant of a river terrace and its alluvial floodplain overlain by chalk-rich bankside deposits, all abutting a Chalk bedrock riverbank. It preserves an area of occupation with activity focused on the riverbank, complemented by occasional activity on a palaeo-landsurface developed on the surface of the alluvial floodplain. Lithic technology at the site consists almost entirely of handaxe manufacture, allowing attribution to an Acheulian industrial tradition. Mammalian and other palaeo-environmental remains are present and associated with the occupation horizons, including large mammal bones showing signs of hominin interference. Dating was based on OSL determinations on the sediments and amino acid racemisation of molluscan remains, supported by biostratigraphic indications. Besides being a rare instance of an undisturbed Palaeolithic palaeo-landscape covering several hectares, the site contributes to wider Quaternary research concerns over the ability of Middle Pleistocene hominins to tolerate colder climatic episodes in higher latitudes, and over settlement history and changing lithic industrial traditions of northwest Europe in relation to climate change and British peninsularity. It is suggested that the Harnham evidence may represent an insular population that had persisted in southern Britain since MIS 10/9, which became locally extinct during the glacial maximum 8.2 marking the end of MIS 8.