33 resultados para LONG-TERM HEALTH EFFECTS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We analyze the causes of the century-long increase in geomagnetic activity, quantified by annual means of the aa index, using observations of interplanetary space, galactic cosmic rays, the ionosphere, and the auroral electrojet, made during the last three solar cycles. The effects of changes in ionospheric conductivity, the Earth's dipole tilt, and magnetic moment are shown to be small; only changes in near-Earth interplanetary space make a significant contribution to the long-term increase in activity. We study the effects of the interplanetary medium by applying dimensional analysis to generate the optimum solar wind-magnetosphere energy coupling function, having an unprecedentedly high correlation coefficient of 0.97. Analysis of the terms of the coupling function shows that the largest contributions to the drift in activity over solar cycles 20-22 originate from rises in the average interplanetary magnetic field (IMF) strength, solar wind concentration, and speed; average IMF orientation has grown somewhat less propitious for causing geomagnetic activity. The combination of these factors explains almost all of the 39% rise in aa observed over the last three solar cycles. Whereas the IMF strength varies approximately in phase with sunspot numbers, neither its orientation nor the solar wind density shows any coherent solar cycle variation. The solar wind speed peaks strongly in the declining phase of even-numbered cycles and can be identified as the chief cause of the phase shift between the sunspot numbers and the aa index. The rise in the IMF magnitude, the largest single contributor to the drift in geomagnetic activity, is shown to be caused by a rise in the solar coronal magnetic field, consistent with a rise in the coronal source field, modeled from photospheric observations, and an observed decay in cosmic ray fluxes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on numerous studies showing that testing studied material can improve long-term retention more than restudying the same material, it is often suggested that the number of tests in education should be increased to enhance knowledge acquisition. However, testing in real-life educational settings often entails a high degree of extrinsic motivation of learners due to the common practice of placing important consequences on the outcome of a test. Such an effect on the motivation of learners may undermine the beneficial effects of testing on long-term memory because it has been shown that extrinsic motivation can reduce the quality of learning. To examine this issue, participants learned foreign language vocabulary words, followed by an immediate test in which one-third of the words were tested and one-third restudied. To manipulate extrinsic motivation during immediate testing, participants received either monetary reward contingent on test performance or no reward. After 1 week, memory for all words was tested. In the immediate test, reward reduced correct recall and increased commission errors, indicating that reward reduced the number of items that can benefit from successful retrieval. The results in the delayed test revealed that reward additionally reduced the gain received from successful retrieval because memory for initially successfully retrieved words was lower in the reward condition. However, testing was still more effective than restudying under reward conditions because reward undermined long-term memory for concurrently restudied material as well. These findings indicate that providing performance–contingent reward in a test can undermine long-term knowledge acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bacterial transformation of phosphorus (P) compounds in soil is largely dependent on soil microbial community function, and is therefore sensitive to anthropogenic disturbances such as fertilization or cropping systems. However, the effect of soil management on the transcription of bacterial genes that encode phosphatases, such as phoD, is largely unknown. This greenhouse study examined the effect of long-term management and P amendment on potential alkaline phosphatase (ALP) activity and phoD gene (DNA) and transcript (RNA) abundance. Soil samples (0–15 cm) were collected from the Glenlea Long-term Rotation near Winnipeg, Manitoba, to compare organic, conventional and prairie management systems. In the greenhouse, pots of soil from each management system were amended with P as either soluble mineral fertilizer or cattle manure and then planted with Italian ryegrass (Lolium multiforum). Soils from each pot were sampled for analysis immediately and after 30 and 106 days. Significant differences among the soil/P treatments were detected for inorganic P, but not the organic P in NaHCO3-extracts. At day 0, ALP activity was similar among the soil/P treatments, but was higher after 30 days for all P amendments in soil from organically managed plots. In contrast, ALP activity in soils under conventional and prairie management responded to increasing rates of manure only, with significant effects from medium and high manure application rates at 30 and 106 days. Differences in ALP activity at 30 days corresponded to the abundance of bacterial phoD genes, which were also significantly higher in soils under organic management. However, this correlation was not significant for transcript abundance. Next-generation sequencing allowed the identification of 199 unique phoD operational taxonomic units (OTUs) from the metagenome (soil DNA) and 35 unique OTUs from the metatranscriptome (soil RNA), indicating that a subset of phoD genes was being transcribed in all soils.