63 resultados para Jaguari river


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study addresses three issues: spatial downscaling, calibration, and combination of seasonal predictions produced by different coupled ocean-atmosphere climate models. It examines the feasibility Of using a Bayesian procedure for producing combined, well-calibrated downscaled seasonal rainfall forecasts for two regions in South America and river flow forecasts for the Parana river in the south of Brazil and the Tocantins river in the north of Brazil. These forecasts are important for national electricity generation management and planning. A Bayesian procedure, referred to here as forecast assimilation, is used to combine and calibrate the rainfall predictions produced by three climate models. Forecast assimilation is able to improve the skill of 3-month lead November-December-January multi-model rainfall predictions over the two South American regions. Improvements are noted in forecast seasonal mean values and uncertainty estimates. River flow forecasts are less skilful than rainfall forecasts. This is partially because natural river flow is a derived quantity that is sensitive to hydrological as well as meteorological processes, and to human intervention in the form of reservoir management.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A methodology for using remotely sensed data to both generate and evaluate a hydraulic model of floodplain inundation is presented for a rural case study in the United Kingdom: Upton-upon-Severn. Remotely sensed data have been processed and assembled to provide an excellent test data set for both model construction and validation. In order to assess the usefulness of the data and the issues encountered in their use, two models for floodplain inundation were constructed: one based on an industry standard one-dimensional approach and the other based on a simple two-dimensional approach. The results and their implications for the future use of remotely sensed data for predicting flood inundation are discussed. Key conclusions for the use of remotely sensed data are that care must be taken to integrate different data sources for both model construction and validation and that improvements in ground height data shift the focus in terms of model uncertainties to other sources such as boundary conditions. The differences between the two models are found to be of minor significance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two ongoing projects at ESSC that involve the development of new techniques for extracting information from airborne LiDAR data and combining this information with environmental models will be discussed. The first project in conjunction with Bristol University is aiming to improve 2-D river flood flow models by using remote sensing to provide distributed data for model calibration and validation. Airborne LiDAR can provide such models with a dense and accurate floodplain topography together with vegetation heights for parameterisation of model friction. The vegetation height data can be used to specify a friction factor at each node of a model’s finite element mesh. A LiDAR range image segmenter has been developed which converts a LiDAR image into separate raster maps of surface topography and vegetation height for use in the model. Satellite and airborne SAR data have been used to measure flood extent remotely in order to validate the modelled flood extent. Methods have also been developed for improving the models by decomposing the model’s finite element mesh to reflect floodplain features such as hedges and trees having different frictional properties to their surroundings. Originally developed for rural floodplains, the segmenter is currently being extended to provide DEMs and friction parameter maps for urban floods, by fusing the LiDAR data with digital map data. The second project is concerned with the extraction of tidal channel networks from LiDAR. These networks are important features of the inter-tidal zone, and play a key role in tidal propagation and in the evolution of salt-marshes and tidal flats. The study of their morphology is currently an active area of research, and a number of theories related to networks have been developed which require validation using dense and extensive observations of network forms and cross-sections. The conventional method of measuring networks is cumbersome and subjective, involving manual digitisation of aerial photographs in conjunction with field measurement of channel depths and widths for selected parts of the network. A semi-automatic technique has been developed to extract networks from LiDAR data of the inter-tidal zone. A multi-level knowledge-based approach has been implemented, whereby low level algorithms first extract channel fragments based mainly on image properties then a high level processing stage improves the network using domain knowledge. The approach adopted at low level uses multi-scale edge detection to detect channel edges, then associates adjacent anti-parallel edges together to form channels. The higher level processing includes a channel repair mechanism.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Global hydrological models (GHMs) model the land surface hydrologic dynamics of continental-scale river basins. Here we describe one such GHM, the Macro-scale - Probability-Distributed Moisture model.09 (Mac-PDM.09). The model has undergone a number of revisions since it was last applied in the hydrological literature. This paper serves to provide a detailed description of the latest version of the model. The main revisions include the following: (1) the ability for the model to be run for n repetitions, which provides more robust estimates of extreme hydrological behaviour, (2) the ability of the model to use a gridded field of coefficient of variation (CV) of daily rainfall for the stochastic disaggregation of monthly precipitation to daily precipitation, and (3) the model can now be forced with daily input climate data as well as monthly input climate data. We demonstrate the effects that each of these three revisions has on simulated runoff relative to before the revisions were applied. Importantly, we show that when Mac-PDM.09 is forced with monthly input data, it results in a negative runoff bias relative to when daily forcings are applied, for regions of the globe where the day-to-day variability in relative humidity is high. The runoff bias can be up to - 80% for a small selection of catchments but the absolute magnitude of the bias may be small. As such, we recommend future applications of Mac-PDM.09 that use monthly climate forcings acknowledge the bias as a limitation of the model. The performance of Mac-PDM.09 is evaluated by validating simulated runoff against observed runoff for 50 catchments. We also present a sensitivity analysis that demonstrates that simulated runoff is considerably more sensitive to method of PE calculation than to perturbations in soil moisture and field capacity parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

While the Cluster spacecraft were located near the high-latitude magnetopause, between 10:10 and 10:40 UT on 16 January 2004, three typical flux transfer event (FTE) signatures were observed. During this interval, simultaneous and conjugated all-sky camera measurements, recorded at Yellow River Station, Svalbard, are available at 630.0 and 557.7nm that show poleward-moving auroral forms (PMAFs), consistent with magnetic reconnection at dayside magnetopause. Simultaneous FTEs seen at the magnetopause mainly move northward, but having duskward (eastward) and tailward velocity components, roughly consistent with the observed direction of motion of the PMAFs in all-sky images. Between the PMAFs meridional keograms, extracted from the all-sky images, show intervals of lower intensity aurora which migrate equatorward just before the PMAFs intensify. This is strong evidence for an equatorward eroding and poleward moving open-closed boundary (OCB) associated with a variable magnetopause reconnection rate under variable IMF conditions. From the durations of the PMAFs we infer that the evolution time of FTEs is 5-11 minutes from its origin on magnetopause to its addition to the polar cap.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Information is provided on phosphorus in the River Kennet and the adjacent Kennet and Avon Canal in southern England to assess their interactions and the changes following phosphorus reductions in sewage treatment work (STW) effluent inputs. A step reduction in soluble reactive phosphorus (SRP) concentration within the effluent (5 to 13 fold) was observed from several STWs discharging to the river in the mid-2000s. This translated to over halving of SRP concentrations within the lower Kennet. Lower Kennet SRP concentrations change from being highest under base-flow to highest under storm-flow conditions. This represented a major shift from direct effluent inputs to a within-catchment source dominated system characteristic of the upper part to the catchment. Average SRP concentrations in the lower Kennet reduced over time towards the target for good water quality. Critically, there was no corresponding reduction in chlorophyll-a concentration, the waters remaining eutrophic when set against standards for lakes. Following the up gradient input of the main water and SRP source (Wilton Water), SRP concentrations in the canal reduced down gradient to below detection limits at times near its junction with the Kennet downstream. However, chlorophyll concentrations in the canal were in an order of magnitude higher than in the river. This probably resulted from long water residence times and higher temperatures promoting progressive algal and suspended sediment generations that consumed SRP. The canal acted as a point source for sediment, algae and total phosphorus to the river especially during the summer months when boat traffic disturbed the canal's bottom sediments and the locks were being regularly opened. The short-term dynamics of this transfer was complex. For the canal and the supply source at Wilton Water, conditions remained hypertrophic when set against standards for lakes even when SRP concentrations were extremely low.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

There is a need for better links between hydrology and ecology, specifically between landscapes and riverscapes to understand how processes and factors controlling the transport and storage of environmental pollution have affected or will affect the freshwater biota. Here we show how the INCA modelling framework, specifically INCA-Sed (the Integrated Catchments model for Sediments) can be used to link sediment delivery from the landscape to sediment changes in-stream. INCA-Sed is a dynamic, process-based, daily time step model. The first complete description of the equations used in the INCA-Sed software (version 1.9.11) is presented. This is followed by an application of INCA-Sed made to the River Lugg (1077 km2) in Wales. Excess suspended sediment can negatively affect salmonid health. The Lugg has a large and potentially threatened population of both Atlantic salmon (Salmo salar) and Brown Trout (Salmo trutta). With the exception of the extreme sediment transport processes, the model satisfactorily simulated both the hydrology and the sediment dynamics in the catchment. Model results indicate that diffuse soil loss is the most important sediment generation process in the catchment. In the River Lugg, the mean annual Guideline Standard for suspended sediment concentration, proposed by UKTAG, of 25 mg l− 1 is only slightly exceeded during the simulation period (1995–2000), indicating only minimal effect on the Atlantic salmon population. However, the daily time step simulation of INCA-Sed also allows the investigation of the critical spawning period. It shows that the sediment may have a significant negative effect on the fish population in years with high sediment runoff. It is proposed that the fine settled particles probably do not affect the salmonid egg incubation process, though suspended particles may damage the gills of fish and make the area unfavourable for spawning if the conditions do not improve.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extensive statistical ‘downscaling’ study is done to relate large-scale climate information from a general circulation model (GCM) to local-scale river flows in SW France for 51 gauging stations ranging from nival (snow-dominated) to pluvial (rainfall-dominated) river-systems. This study helps to select the appropriate statistical method at a given spatial and temporal scale to downscale hydrology for future climate change impact assessment of hydrological resources. The four proposed statistical downscaling models use large-scale predictors (derived from climate model outputs or reanalysis data) that characterize precipitation and evaporation processes in the hydrological cycle to estimate summary flow statistics. The four statistical models used are generalized linear (GLM) and additive (GAM) models, aggregated boosted trees (ABT) and multi-layer perceptron neural networks (ANN). These four models were each applied at two different spatial scales, namely at that of a single flow-gauging station (local downscaling) and that of a group of flow-gauging stations having the same hydrological behaviour (regional downscaling). For each statistical model and each spatial resolution, three temporal resolutions were considered, namely the daily mean flows, the summary statistics of fortnightly flows and a daily ‘integrated approach’. The results show that flow sensitivity to atmospheric factors is significantly different between nival and pluvial hydrological systems which are mainly influenced, respectively, by shortwave solar radiations and atmospheric temperature. The non-linear models (i.e. GAM, ABT and ANN) performed better than the linear GLM when simulating fortnightly flow percentiles. The aggregated boosted trees method showed higher and less variable R2 values to downscale the hydrological variability in both nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B, future relative changes of fortnightly median flows were projected based on the regional downscaling approach. The results suggest a global decrease of flow in both pluvial and nival regimes, especially in spring, summer and autumn, whatever the considered scenario. The discussion considers the performance of each statistical method for downscaling flow at different spatial and temporal scales as well as the relationship between atmospheric processes and flow variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The EU Project AquaTerra generates knowledge about the river-soil-sediment-groundwater system and delivers scientific information of value for river basin management. In this article, the use and ignorance of scientific knowledge in decision making is explored by a theoretical review. We elaborate on the 'two-communities theory', which explains the problems of the policy-science interface by relating and comparing the different cultures, contexts, and languages of researchers and policy makers. Within AquaTerra, the EUPOL subproject examines the policy-science interface with the aim of achieving a good connection between the scientific output of the project and EU policies. We have found two major barriers, namely language and resources, as well as two types of relevant relationships: those between different research communities and those between researchers and policy makers. (c) 2007 Elsevier Ltd. All rights reserved.