37 resultados para Insight based training
Resumo:
Algorithms for computer-aided diagnosis of dementia based on structural MRI have demonstrated high performance in the literature, but are difficult to compare as different data sets and methodology were used for evaluation. In addition, it is unclear how the algorithms would perform on previously unseen data, and thus, how they would perform in clinical practice when there is no real opportunity to adapt the algorithm to the data at hand. To address these comparability, generalizability and clinical applicability issues, we organized a grand challenge that aimed to objectively compare algorithms based on a clinically representative multi-center data set. Using clinical practice as the starting point, the goal was to reproduce the clinical diagnosis. Therefore, we evaluated algorithms for multi-class classification of three diagnostic groups: patients with probable Alzheimer's disease, patients with mild cognitive impairment and healthy controls. The diagnosis based on clinical criteria was used as reference standard, as it was the best available reference despite its known limitations. For evaluation, a previously unseen test set was used consisting of 354 T1-weighted MRI scans with the diagnoses blinded. Fifteen research teams participated with a total of 29 algorithms. The algorithms were trained on a small training set (n = 30) and optionally on data from other sources (e.g., the Alzheimer's Disease Neuroimaging Initiative, the Australian Imaging Biomarkers and Lifestyle flagship study of aging). The best performing algorithm yielded an accuracy of 63.0% and an area under the receiver-operating-characteristic curve (AUC) of 78.8%. In general, the best performances were achieved using feature extraction based on voxel-based morphometry or a combination of features that included volume, cortical thickness, shape and intensity. The challenge is open for new submissions via the web-based framework: http://caddementia.grand-challenge.org.
Resumo:
A practical single-carrier (SC) block transmission with frequency domain equalisation (FDE) system can generally be modelled by the Hammerstein system that includes the nonlinear distortion effects of the high power amplifier (HPA) at transmitter. For such Hammerstein channels, the standard SC-FDE scheme no longer works. We propose a novel Bspline neural network based nonlinear SC-FDE scheme for Hammerstein channels. In particular, we model the nonlinear HPA, which represents the complex-valued static nonlinearity of the Hammerstein channel, by two real-valued B-spline neural networks, one for modelling the nonlinear amplitude response of the HPA and the other for the nonlinear phase response of the HPA. We then develop an efficient alternating least squares algorithm for estimating the parameters of the Hammerstein channel, including the channel impulse response coefficients and the parameters of the two B-spline models. Moreover, we also use another real-valued B-spline neural network to model the inversion of the HPA’s nonlinear amplitude response, and the parameters of this inverting B-spline model can be estimated using the standard least squares algorithm based on the pseudo training data obtained as a byproduct of the Hammerstein channel identification. Equalisation of the SC Hammerstein channel can then be accomplished by the usual one-tap linear equalisation in frequency domain as well as the inverse Bspline neural network model obtained in time domain. The effectiveness of our nonlinear SC-FDE scheme for Hammerstein channels is demonstrated in a simulation study.
Resumo:
High bandwidth-efficiency quadrature amplitude modulation (QAM) signaling widely adopted in high-rate communication systems suffers from a drawback of high peak-toaverage power ratio, which may cause the nonlinear saturation of the high power amplifier (HPA) at transmitter. Thus, practical high-throughput QAM communication systems exhibit nonlinear and dispersive channel characteristics that must be modeled as a Hammerstein channel. Standard linear equalization becomes inadequate for such Hammerstein communication systems. In this paper, we advocate an adaptive B-Spline neural network based nonlinear equalizer. Specifically, during the training phase, an efficient alternating least squares (LS) scheme is employed to estimate the parameters of the Hammerstein channel, including both the channel impulse response (CIR) coefficients and the parameters of the B-spline neural network that models the HPA’s nonlinearity. In addition, another B-spline neural network is used to model the inversion of the nonlinear HPA, and the parameters of this inverting B-spline model can easily be estimated using the standard LS algorithm based on the pseudo training data obtained as a natural byproduct of the Hammerstein channel identification. Nonlinear equalisation of the Hammerstein channel is then accomplished by the linear equalization based on the estimated CIR as well as the inverse B-spline neural network model. Furthermore, during the data communication phase, the decision-directed LS channel estimation is adopted to track the time-varying CIR. Extensive simulation results demonstrate the effectiveness of our proposed B-Spline neural network based nonlinear equalization scheme.
Resumo:
Abstract Background: Depression is highly prevalent within individuals diagnosed with schizophrenia, and is associated with an increased risk of suicide. There are no current evidence based treatments for low mood within this group. The specific targeting of co-morbid conditions within complex mental health problems lends itself to the development of short-term structured interventions which are relatively easy to disseminate within health services. A brief cognitive intervention based on a competitive memory theory of depression, is being evaluated in terms of its effectiveness in reducing depression within this group. Methods/Design: This is a single blind, intention-to-treat, multi-site, randomized controlled trial comparing Positive Memory Training plus Treatment as Usual with Treatment as Usual alone. Participants will be recruited from two NHS Trusts in Southern England. In order to be eligible, participants must have a DSM-V diagnosis of schizophrenia or schizo-affective disorder and exhibit at least a mild level of depression. Following baseline assessment eligible participants will be randomly allocated to either the Positive Memory Training plus Treatment as Usual group or the Treatment as Usual group. Outcome will be assessed at the end of treatment (3-months) and at 6-month and 9-month post randomization by assessors blind to group allocation. The primary outcome will be levels of depression and secondary outcomes will be severity of psychotic symptoms and cost-effectiveness. Semi-structured interviews will be conducted with all participants who are allocated to the treatment group so as to explore the acceptability of the intervention. Discussion: Cognitive behaviour therapy is recommended for individuals diagnosed with schizophrenia. However, the number of sessions and length of training required to deliver this intervention has caused a limit in availability. The current trial will evaluate a short-term structured protocol which targets a co-morbid condition often considered of primary importance by service users. If successful the intervention will be an important addition to current initiatives aimed at increasing access to psychological therapies for people diagnosed with severe mental health problems. Trial registration: Current Controlled Trials. ISRCTN99485756. Registered 13 March 2014.
Resumo:
SCOPE: A high intake of n-3 PUFA provides health benefits via changes in the n-6/n-3 ratio in blood. In addition to such dietary PUFAs, variants in the fatty acid desaturase 1 (FADS1) gene are also associated with altered PUFA profiles. METHODS AND RESULTS: We used mathematical modelling to predict levels of PUFA in whole blood, based on MHT and bolasso selected food items, anthropometric and lifestyle factors, and the rs174546 genotypes in FADS1 from 1,607 participants (Food4Me Study). The models were developed using data from the first reported time point (training set) and their predictive power was evaluated using data from the last reported time point (test set). Amongst other food items, fish, pizza, chicken and cereals were identified as being associated with the PUFA profiles. Using these food items and the rs174546 genotypes as predictors, models explained 26% to 43% of the variability in PUFA concentrations in the training set and 22% to 33% in the test set. CONCLUSIONS: Selecting food items using MHT is a valuable contribution to determine predictors, as our models' predictive power is higher compared to analogue studies. As unique feature, we additionally confirmed our models' power based on a test set.
Resumo:
BACKGROUND: Using continuing professional development (CPD) as part of the revalidation of pharmacy professionals has been proposed in the UK but not implemented. We developed a CPD Outcomes Framework (‘the framework’) for scoring CPD records, where the score range was -100 to +150 based on demonstrable relevance and impact of the CPD on practice. OBJECTIVE: This exploratory study aimed to test the outcome of training people to use the framework, through distance-learning material (active intervention), by comparing CPD scores before and after training. SETTING: Pharmacy professionals were recruited in the UK in Reading, Banbury, Southampton, Kingston-upon-Thames and Guildford in 2009. METHOD: We conducted a randomised, double-blinded, parallel-group, before and after study. The control group simply received information on new CPD requirements through the post; the active intervention group also received the framework and associated training. Altogether 48 participants (25 control, 23 active) completed the study. All participants submitted CPD records to the research team before and after receiving the posted resources. The records (n=226) were scored blindly by the researchers using the framework. A subgroup of CPD records (n=96) submitted first (before-stage) and rewritten (after-stage) were analysed separately. MAIN OUTCOME MEASURE: Scores for CPD records received before and after distributing group-dependent material through the post. RESULTS: Using a linear-regression model both analyses found an increase in CPD scores in favour of the active intervention group. For the complete set of records, the effect was a mean difference of 9.9 (95% CI = 0.4 to 19.3), p-value = 0.04. For the subgroup of rewritten records, the effect was a mean difference of 17.3 (95% CI = 5.6 to 28.9), p-value = 0.0048. CONCLUSION: The intervention improved participants’ CPD behaviour. Training pharmacy professionals to use the framework resulted in better CPD activities and CPD records, potentially helpful for revalidation of pharmacy professionals. IMPACT: • Using a bespoke Continuing Professional Development outcomes framework improves the value of pharmacy professionals’ CPD activities and CPD records, with the potential to improve patient care. • The CPD outcomes framework could be helpful to pharmacy professionals internationally who want to improve the quality of their CPD activities and CPD records. • Regulators and officials across Europe and beyond can assess the suitability of the CPD outcomes framework for use in pharmacy CPD and revalidation in their own setting.
Resumo:
Data generated from next generation sequencing (NGS) will soon comprise the majority of information about arbuscular mycorrhizal fungal (AMF) communities. Although these approaches give deeper insight, analysing NGS data involves decisions that can significantly affect results and conclusions. This is particularly true for AMF community studies, because much remains to be known about their basic biology and genetics. During a workshop in 2013, representatives from seven research groups using NGS for AMF community ecology gathered to discuss common challenges and directions for future research. Our goal was to improve the quality and accessibility of NGS data for the AMF research community. Discussions spanned sampling design, sample preservation, sequencing, bioinformatics and data archiving. With concrete examples we demonstrated how different approaches can significantly alter analysis outcomes. Failure to consider the consequences of these decisions may compound bias introduced at each step along the workflow. The products of these discussions have been summarized in this paper in order to serve as a guide for any researcher undertaking NGS sequencing of AMF communities.