43 resultados para Injection pain


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinical evidence suggests that a persistent search for solutions for chronic pain may bring along costs at the cognitive, affective, and behavioral level. Specifically, attempts to control pain may fuel hypervigilance and prioritize attention towards pain-related information. This hypothesis was investigated in an experiment with 41 healthy volunteers. Prioritization of attention towards a signal for pain was measured using an adaptation of a visual search paradigm in which participants had to search for a target presented in a varying number of colored circles. One of these colors (Conditioned Stimulus) became a signal for pain (Unconditioned Stimulus: electrocutaneous stimulus at tolerance level) using a classical conditioning procedure. Intermixed with the visual search task, participants also performed another task. In the pain-control group, participants were informed that correct and fast responses on trials of this second task would result in an avoidance of the Unconditioned Stimulus. In the comparison group, performance on the second task was not instrumental in controlling pain. Results showed that in the pain-control group, attention was more prioritized towards the Conditioned Stimulus than in the comparison group. The theoretical and clinical implications of these results are discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Although dealing with pain is a vital goal to pursue, most individuals are also engaged in the pursuit of other goals. The aim of the present experiment was to investigate whether attentional bias to pain signals is inhibited when one is pursuing a concurrent salient but nonpain task goal. Attentional bias to pain signals was measured in pain-free volunteers (n=63) using a spatial cueing task with pain cues and neutral cues. The pursuit of a concurrent goal was manipulated by including additional trials in which a digit appeared at the middle of the screen. Half of the participants (goal group) were instructed to name these additional stimuli aloud. In order to increase the affective-motivational value of this non-pain-related goal, monetary reward and punishment were made contingent upon the performance of this task. Participants of the control group did not perform the additional task. As predicted, the results show attentional bias to pain signals in the control group, but not in the goal group. This indicates that attentional bias to signals of impending pain is inhibited when one is engaged in the pursuit of another salient but nonpain goal. The results of this study underscore a motivational view on attention to pain, in which the pursuit of multiple goals, including nonpain goals, is taken into account.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Histone deacetylase inhibitors (HDACIs) interfere with the epigenetic process of histone acetylation and are known to have analgesic properties in models of chronic inflammatory pain. The aim of this study was to determine whether these compounds could also affect neuropathic pain. Different class I HDACIs were delivered intrathecally into rat spinal cord in models of traumatic nerve injury and antiretroviral drug-induced peripheral neuropathy (stavudine, d4T). Mechanical and thermal hypersensitivity was attenuated by 40% to 50% as a result of HDACI treatment, but only if started before any insult. The drugs globally increased histone acetylation in the spinal cord, but appeared to have no measurable effects in relevant dorsal root ganglia in this treatment paradigm, suggesting that any potential mechanism should be sought in the central nervous system. Microarray analysis of dorsal cord RNA revealed the signature of the specific compound used (MS-275) and suggested that its main effect was mediated through HDAC1. Taken together, these data support a role for histone acetylation in the emergence of neuropathic pain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe development of a questionnaire to elicit pain symptoms and experience, for use by people with dementia or their carers, at hospital admission. The questionnaire provided contextual information to support professionals’ use of the Abbey Pain Scale, a validated tool used by nursing staff internationally. Appropriate information and physical design were required in order, not only to create an approachable questionnaire for patients and carers, but also to ensure fit with hospital processes. Fit with hospital process had significant influence on the final form of the questionnaire, compromising some aspects of design for patients and carers, but this compromise was considered essential to ensure pain management procedures were supplemented by wider, contextual information.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human minds often wander away from their immediate sensory environment. It remains unknown whether such mind wandering is unsystematic or whether it lawfully relates to an individual’s tendency to attend to salient stimuli such as pain and their associated brain structure/function. Studies of pain–cognition interactions typically examine explicit manipulation of attention rather than spontaneous mind wandering. Here we sought to better represent natural fluctuations in pain in daily life, so we assessed behavioral and neural aspects of spontaneous disengagement of attention from pain. We found that an individual’s tendency to attend to pain related to the disruptive effect of pain on his or her cognitive task performance. Next, we linked behavioral findings to neural networks with strikingly convergent evidence from functional magnetic resonance imaging during pain coupled with thought probes of mind wandering, dynamic resting state activity fluctuations, and diffusion MRI. We found that (i) pain-induced default mode network (DMN) deactivations were attenuated during mind wandering away from pain; (ii) functional connectivity fluctuations between the DMN and periaqueductal gray (PAG) dynamically tracked spontaneous attention away from pain; and (iii) across individuals, stronger PAG–DMN structural connectivity and more dynamic resting state PAG–DMN functional connectivity were associated with the tendency to mind wander away from pain. These data demonstrate that individual tendencies to mind wander away from pain, in the absence of explicit manipulation, are subserved by functional and structural connectivity within and between default mode and antinociceptive descending modulation networks.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteolytic enzymes comprise approximately 2 percent of the human genome [1]. Given their abundance, it is not surprising that proteases have diverse biological functions, ranging from the degradation of proteins in lysosomes to the control of physiological processes such as the coagulation cascade. However, a subset of serine proteases (possessing serine residues within their catalytic sites), which may be soluble in the extracellular fluid or tethered to the plasma membrane, are signaling molecules that can specifically regulate cells by cleaving protease-activated receptors (PARs), a family of four G-protein-coupled receptors (GPCRs). These serine proteases include members of the coagulation cascade (e.g., thrombin, factor VIIa, and factor Xa), proteases from inflammatory cells (e.g., mast cell tryptase, neutrophil cathepsin G), and proteases from epithelial tissues and neurons (e.g., trypsins). They are often generated or released during injury and inflammation, and they cleave PARs on multiple cell types, including platelets, endothelial and epithelial cells, myocytes, fibroblasts, and cells of the nervous system. Activated PARs regulate many essential physiological processes, such as hemostasis, inflammation, pain, and healing. These proteases and their receptors have been implicated in human disease and are potentially important targets for therapy. Proteases and PARs participate in regulating most organ systems and are the subject of several comprehensive reviews [2, 3]. Within the central and peripheral nervous systems, proteases and PARs can control neuronal and astrocyte survival, proliferation and morphology, release of neurotransmitters, and the function and activity of ion channels, topics that have also been comprehensively reviewed [4, 5]. This chapter specifically concerns the ability of PARs to regulate TRPV channels of sensory neurons and thereby affect neurogenic inflammation and pain transmission [6, 7].

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This book deals with bodily pain in the late Victorian period, considering the ways in which its understanding is shaped by medicine and theology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Immunodiagnostic microneedles provide a novel way to extract protein biomarkers from the skin in a minimally invasive manner for analysis in vitro. The technology could overcome challenges in biomarker analysis specifically in solid tissue, which currently often involves invasive biopsies. This study describes the development of a multiplex immunodiagnostic device incorporating mechanisms to detect multiple antigens simultaneously, as well as internal assay controls for result validation. A novel detection method is also proposed. It enables signal detection specifically at microneedle tips and therefore may aid the construction of depth profiles of skin biomarkers. The detection method can be coupled with computerised densitometry for signal quantitation. The antigen specificity, sensitivity and functional stability of the device were assessed against a number of model biomarkers. Detection and analysis of endogenous antigens (interleukins 1α and 6) from the skin using the device was demonstrated. The results were verified using conventional enzyme-linked immunosorbent assays. The detection limit of the microneedle device, at ≤10 pg/mL, was at least comparable to conventional plate-based solid-phase enzyme immunoassays.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Foam properties depend on the physico-chemical characteristics of the continuous phase, the method of production and process conditions employed; however the preparation of barista-style milk foams in coffee shops by injection of steam uses milk as its main ingredient which limits the control of foam properties by changing the biochemical characteristics of the continuous phase. Therefore, the control of process conditions and nozzle design are the only ways available to produce foams with diverse properties. Milk foams were produced employing different steam pressures (100-280 kPa gauge) and nozzle designs (ejector, plunging-jet and confined-jet nozzles). The foamability of milk, and the stability, bubble size and texture of the foams were investigated. Variations in steam pressure and nozzle design changed the hydrodynamic conditions during foam production, resulting in foams having a range of properties. Steam pressure influenced foam characteristics, although the net effect depended on the nozzle design used. These results suggest that, in addition to the physicochemical determinants of milk, the foam properties can also be controlled by changing the steam pressure and nozzle design.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Functional neuroimaging investigations of pain have discovered a reliable pattern of activation within limbic regions of a putative "pain matrix" that has been theorized to reflect the affective dimension of pain. To test this theory, we evaluated the experience of pain in a rare neurological patient with extensive bilateral lesions encompassing core limbic structures of the pain matrix, including the insula, anterior cingulate, and amygdala. Despite widespread damage to these regions, the patient's expression and experience of pain was intact, and at times excessive in nature. This finding was consistent across multiple pain measures including self-report, facial expression, vocalization, withdrawal reaction, and autonomic response. These results challenge the notion of a "pain matrix" and provide direct evidence that the insula, anterior cingulate, and amygdala are not necessary for feeling the suffering inherent to pain. The patient's heightened degree of pain affect further suggests that these regions may be more important for the regulation of pain rather than providing the decisive substrate for pain's conscious experience.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Anxiolytic effects of perceived control have been observed across species. In humans, neuroimaging studies have suggested that perceived control and cognitive reappraisal reduce negative affect through similar mechanisms. An important limitation of extant neuroimaging studies of perceived control in terms of directly testing this hypothesis, however, is the use of within-subject designs, which confound participants' affective response to controllable and uncontrollable stress. To compare neural and affective responses when participants were exposed to either uncontrollable or controllable stress, two groups of participants received an identical series of stressors (thermal pain stimuli). One group ("controllable") was led to believe they had behavioral control over the pain stimuli, whereas another ("uncontrollable") believed they had no control. Controllable pain was associated with decreased state anxiety, decreased activation in amygdala, and increased activation in nucleus accumbens. In participants who perceived control over the pain, reduced state anxiety was associated with increased functional connectivity between each of these regions and ventral lateral/ventral medial pFC. The location of pFC findings is consistent with regions found to be critical for the anxiolytic effects of perceived control in rodents. Furthermore, interactions observed between pFC and both amygdala and nucleus accumbens are remarkably similar to neural mechanisms of emotion regulation through reappraisal in humans. These results suggest that perceived control reduces negative affect through a general mechanism involved in the cognitive regulation of emotion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Repeated exposure to pain can result in sensitization of the central nervous system, enhancing subsequent pain and potentially leading to chronicity. The ability to reverse this sensitization in a top-down manner would be of tremendous clinical benefit, but the degree that this can be accomplished volitionally remains unknown. Here we investigated whether a brief (~5 min) cognitive-behavioural intervention could modify pain perception and reduce central sensitization (as reflected by secondary hyperalgesia). In each of 8 sessions, 2 groups of healthy human subjects received a series of painful thermal stimuli that resulted in secondary hyperalgesia. One group (regulate) was given brief pain-focused cognitive training at each session, while the other group (control) received a non-pain-focused intervention. The intervention selectively reduced pain unpleasantness but not pain intensity in the regulate group. Furthermore, secondary hyperalgesia was significantly reduced in the regulate group compared with the control group. Reduction in secondary hyperalgesia was associated with reduced pain catastrophizing, suggesting that changes in central sensitization are related to changes in pain-related cognitions. Thus, we demonstrate that central sensitization can be modified volitionally by altering pain-related thoughts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Human functional imaging provides a correlative picture of brain activity during pain. A particular set of central nervous system structures (eg, the anterior cingulate cortex, thalamus, and insula) consistently respond to transient nociceptive stimuli causing pain. Activation of this so-called pain matrix or pain signature has been related to perceived pain intensity, both within and between individuals,1,2 and is now considered a candidate biomarker for pain in medicolegal settings and a tool for drug discovery. The pain-specific interpretation of such functional magnetic resonance imaging (fMRI) responses, although logically flawed,3,4 remains pervasive. For example, a 2015 review states that “the most likely interpretation of activity in the pain matrix seems to be pain.”4 Demonstrating the nonspecificity of the pain matrix requires ruling out the presence of pain when highly salient sensory stimuli are presented. In this study, we administered noxious mechanical stimuli to individuals with congenital insensitivity to pain and sampled their brain activity with fMRI. Loss-of-function SCN9A mutations in these individuals abolishes sensory neuron sodium channel Nav1.7 activity, resulting in pain insensitivity through an impaired peripheral drive that leaves tactile percepts fully intact.5 This allows complete experimental disambiguation of sensory responses and painful sensations