66 resultados para In vitro production


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prebiotics are nondigestible carbohydrates that beneficially affect the host by selectively stimulating the growth and/or activity of one, or a limited number of, bacteria present in the colon. The selected genera should have the capacity to improve host health (e.g. Bifidobacterium, Lactobacillus). To help identify preferred types, for inclusion into the diet, a quantitative equation [measure of the prebiotic effect (MPE)] is suggested. This will help evaluate, in vitro, the fermentation of dietary carbohydrates and compare their prebiotic effect. Although the approach is not meant to define health values, it is formulated to better inform the choice of prebiotic. It therefore, compares measurements of bacterial changes through the determination of maximum growth rates of predominant groups present in faeces, rate of substrate assimilation and the production of lactic, acetic, propionic and butyric acids. The equation will allow further in vitro comparisons of MPE, leading towards further studies (e.g. in humans) to determine the success of dietary intervention. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirred, pH controlled batch cultures were carried out with faecal inocula and various chitosans to investigate the fermentation of chitosan derivatives by the human gut flora. Changes in bacterial levels and short chain fatty acids were measured over time. Low, medium and high molecular weight chitosan caused a decrease in bacteroides, bifidobacteria, clostridia and lactobacilli. A similar pattern was seen with chitosan oligosaccharide (COS). Butyrate levels also decreased. A three-stage fermentation model of the human colon was used for investigation of the metabolism of COS. In a region representing the proximal colon, clostridia decreased while lactobacilli increased. In the region representing the transverse colon, bacteroides and clostridia increased. Distally a small increase in bacteroides occurred. Butyrate levels increased. Under the highly competitive conditions of the human colon, many members of the microflora, are unable to compete for chitosans of low, medium or high molecular weight. COS were more easily utilised and when added to an in vitro colonic model led to increased production of butyrate, but some populations of potentially detrimental bacteria also increased. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Stirred, pH-controlled anaerobic batch cultures were used to evaluate the in vitro utilisation by canine gut microflora of novel alpha-galactooligosaccharides synthesised with an enzyme extract from a canine Lactobacillus reuteri strain. Fructooligosaccharides (FOS), melibiose and raffinose were used as reference carbohydrates for the prebiotic properties of the synthesised oligosaccharide (galactosyl melibiose mixture-GMM). Addition of Lactobacillus acidophilus was used as control for the evaluation of the synbiotic properties of the oligosaccharide with L. reuteri. Populations of predominant gut bacterial groups were monitored over 48 h of batch culture by fluorescent in situ hybridisation, and short-chain fatty acid (SCFA) production was measured. GMM showed a higher increase in bifidobacteria and lactobacilli population number and size as well as a higher decrease in clostridia population number and size compared to the commercial prebiotics (FOS, melibiose, raffinose). This prebiotic effect was further increased by the addition of L. reuteri followed by a change in the SCFA production pattern compared to GMM alone or GMM with L. acidophilus. The observed change in SCFA production was in accordance with the fermentation properties of L. reuteri, suggesting that the novel synbiotic had a significant effect on the canine gut microflora fermentation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Galactooligosaccharides (GOS) are well-known prebiotic ingredients which can form the basis of new functional dairy products. In this work, the production and characterization of glycated beta-lactoglobulin beta-LG) with prebiotic GOS through the Maillard reaction under controlled conditions (a(w) = 0.44, 40 degrees C for 23 days) have been studied. The extent of glycation of beta-LG was evaluated by formation of furosine which progressively increased with storage for up to 16 days, suggesting that the formation of Amadori compounds prevailed over their degradation. RP-HPLC-UV, SIDS-PAGE, and IEF profiles of beta-LG were modified as a consequence of its glycation. MALDI-ToF mass spectra of glycated beta-LG showed an increase of up to similar to 21% in its average molecular mass after storage for 23 days. Moreover, a decrease in unconjugated GOS (one tri-, two tetra-, and one pentasaccharide) was observed by HPAEC-PAD upon glycation. These results were confirmed by ESI MS. The stability of the glycated beta-LG to in vitro simulated gastrointestinal digestion was also described and compared with that of the unglycated protein. The yield of digestion products of glycated beta-LG was lower than that observed for the unglycated protein. The conjugation of prebiotic carbohydrates to stable proteins and peptides could open new routes of research in the study of functional ingredients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study evaluated the use of a bile-salt-hydrolyzing Lactobacillus fermentum strain as a probiotic with potential hypocholesterolemic properties. The effect of L. fermentum on representative microbial populations and overall metabolic activity of the human intestinal microbiota was investigated using a three-stage continuous culture system. Also, the use of galactooligosaccharides as a prebiotic to enhance growth and/or activity of the Lactobacillus strain was evaluated. Administration of L. fermentum resulted in a decrease in the overall bifidobacterial population (ca. 1 log unit). In the in vitro system, no significant changes were observed in the total bacterial, Lactobacillus, Bacteroides, and clostridial populations through L. fermentum supplementation. Acetate production decreased by 9 to 27%, while the propionate and butyrate concentrations increased considerably (50 to 90% and 52 to 157%, respectively). A general, although lesser, increase in the production of lactate was observed with the administration of the L. fermentum strain. Supplementation of the prebiotic to the culture medium did not cause statistically significant changes in either the numbers or the activity of the microbiota, although an increase in the butyrate production was seen (29 to 39%). Results from this in vitro study suggest that L.Fermentum KC5b is a candidate probiotic which may affect cholesterol metabolism. The short-chain fatty acid concentrations, specifically the molar proportion of propionate and/or bile salt deconjugation, are probably the major mechanism involved in the purported cholesterol-lowering properties of this strain.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to evaluate in vitro the influence of fermentable carbohydrates on the activity of porcine microbiota and survival of Salmonella Typhimurium in a batch culture system simulating the porcine hindgut. The carbohydrates tested were xylooligosaccharides, a mixture of fructooligosaccharides/inulin (FIN), fructooligosaccharides (FOS), gentiooligosaccharides (GEO) and lactulose (LAC). These ingredients stimulated the growth of selected Bifidobacterium and Lactobacillus species in pure cultures. In batch cultures, the carbohydrates influenced some fermentation parameters. For example, GEO and FIN significantly increased lactic acids compared with the control (no added carbohydrate). With the exception of LAC, the test carbohydrates increased the production of short-chain fatty acid (SCFA) and modified SCFA profiles. Quantitative analysis of bacterial populations by FISH revealed increased counts of the Bifidobacterium group compared with control and, with exception of FOS, increased Lactobacillus, Leuconostoc and Weissella spp. counts. Salmonella numbers were the lowest during the fermentation of LAC. This work has looked at carbohydrate metabolism by porcine microbiota in a pH-controlled batch fermentation system. It provides an initial model to analyse interactions with pathogens.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fermentation properties of oligosaccharides derived from orange peel pectin were assessed in mixed fecal bacterial culture. The orange peel oligosaccharide fraction contained glucose in addition to rhamnogalacturonan and xylogalacturonan pectic oligosaccharides. Twenty-four-hour, temperature- and pH-controlled, stirred anaerobic fecal batch cultures were used to determine the effects that oligosaccharides derived from orange products had on the composition of the fecal microbiota. The effects were measured through fluorescent in situ hybridization to determine changes in bacterial populations, fermentation end products were analyzed by high-performance liquid chromatography to assess short-chain fatty acid concentrations, and subsequently, a prebiotic index (PI) was determined. Pectic oligosaccharides (POS) were able to increase the bifidobacterial and Eubacterium rectale numbers, albeit resulting in a lower prebiotic index than that from fructo-oligosaccharide metabolism. Orange albedo maintained the growth of most bacterial populations and gave a PI similar to that of soluble starch. Fermentation of POS resulted in an increase in the Eubacterium rectale numbers and concomitantly increased butyrate production. In conclusion, this study has shown that POS can have a beneficial effect on the fecal microflora; however, a classical prebiotic effect was not found. An increase in the Eubacterium rectale population was found, and butyrate levels increased, which is of potential benefit to the host.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The prebiotic potential of oat samples was investigated by in vitro shaker-flask anaerobic fermentations with human fecal cultures. The oat bran fraction was obtained by debranning and was compared with other carbon sources such as whole oat flour, glucose, and fructo-oligosaccharide. The oat bran fraction showed a decrease in culturable anaerobes and clostridia and an increase in bifidobacteria and lactobacilli populations. A similar pattern was observed in fructo-oligosaccharide. Butyrate production was higher in oat bran compared to glucose and similar to that in fructo-oligosaccharide. Production of propionate was higher in the two oat media than in fructo-oligosaccharide and glucose, which can be used as energy source by the liver. This study suggests that the oat bran fraction obtained by debranning is digested by the gut ecosystem and increases the population of beneficial bacteria in the indigenous gut microbiota. This medium also provides an energy source preferred by colonocytes when it is metabolized by the gut flora.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The fermentation of three arabinoxylan (AX) fractions from wheat by the human fecal microflora was investigated in vitro. Three AX fractions, with average molecular masses of 354, 278, and 66 kDa, were incorporated into miniature-scale batch cultures (with inulin as a positive prebiotic control) with feces from three healthy donors, aged 23-29. Microflora changes were monitored by the culture-independent technique, fluorescent in situ hybridization, and short chain fatty acid (SCFA) and lactic acid production were measured by high-performance liquid chromatography. Total cell numbers increased significantly in all treated cultures, and the fermentation of AX was associated with a proliferation of the bifidobacteria, lactobacilli, and eubacteria groups. Smaller but statistically significant increases in bacteroides and clostridia groups were also observed. All AX fractions had comparable bifidogenic impacts on the microflora at 5 and 12 h, but the 66 kDa AX was particularly selective for lactobacilli. Eubacteria increased significantly on all AX fractions, particularly on 66 kDa AX. As previously reported, inulin gave a selective increase in bifidobacteria. All supplemented cultures showed significant rises in total SCFA production, with a particularly high proportion of butyric acid being produced from AX fermentation. The prebiotic effect, that is, the selectivity of AX for bifidobacteria and lactobacilli groups, increased as the molecular mass of the AX decreased. This suggests that molecular mass may influence the fermentation of AX in the colon.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims: This study was carried out to evaluate in vitro the fermentation properties and the potential prebiotic activity of Agave-fructans extracted from Agave tequilana (Predilife). Methods and Results: Five different commercial prebiotics were compared using 24-h pH-controlled anaerobic batch cultures inoculated with human faecal slurries. Measurement of prebiotic efficacy was obtained by comparing bacterial changes, and the production of short-chain fatty acids (SCFA) was also determined. Effects upon major groups of the microbiota were monitored over 24 h incubations by fluorescence in situ hybridization. SCFA were measured by HPLC. Fermentation of the Agave fructans (Predilife) resulted in a large increase in numbers of bifidobacteria and lactobacilli. Conclusions: Under the in vitro conditions used, this study has shown the differential impact of Predilife on the microbial ecology of the human gut. Significance and Impact of the Study: This is the first study reporting of a potential prebiotic mode of activity for Agave fructans investigated which significantly increased populations of bifidobacteria and lactobacilli compared to cellulose used as a control.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study was carried out to examine the effect or inulin (IN), fructooligosaccharide (FOS), polydextrose (POL) and isomaltooligosaccharides (ISO), alone and in combination, on gas production, gas composition and prebiotic effects. Static batch culture fermentation was performed with faecal samples from three healthy volunteers to study the volume and composition of gas generated and changes in bacterial populations. Four carbohydrates alone or mixed with one another (50:50) were examined. Prebiotic index (PI) was calculated and used to compare the prebiotic effect. The high amount of gas produced by IN was reduced by mixing it with FOS. No reduction in gas generation was observed when POL and ISO mixed with other substrates. It was found that the mixture of IN and FOS was effective in reducing the amount of gas produced while augmenting or maintaining their potential to Support the growth of bifidobacteria in Faecal batch culture as the highest PI was achieved with FOS alone and a mixture of FOS and IN. It was also found that high volume of gas was generated in presence of POL and ISO and they had lower prebiotic effect. The results of this study imply that a Mixture of prebiotics could prove effective in reducing the amount of gas generated by the gut microflora. (c) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epidemiological studies and healthy eating guidelines suggest a positive correlation between ingestion of whole grain cereal and food rich in fibre with protection from chronic diseases. The prebiotic potential of whole grains may be related, however, little is known about the microbiota modulatory capability of oat grain or the impact processing has on this ability. In this study the fermentation profile of whole grain oat flakes, processed to produce two different sized flakes (small and large), by human faecal microbiota was investigated in vitro. Simulated digestion and subsequent fermentation by gut bacteria was investigated using pH controlled faecal batch cultures inoculated with human faecal slurry. The different sized oat flakes, Oat 23’s (0.53–0.63 mm) and Oat 25’s/26’s (0.85–1.0 mm) were compared to oligofructose, a confirmed prebiotic, and cellulose, a poorly fermented carbohydrate. Bacterial enumeration was carried out using the culture independent technique, fluorescent in situ hybridisation, and short chain fatty acid (SCFA) production monitored by gas chromatography. Significant changes in total bacterial populations were observed after 24 h incubation for all substrates except Oat 23’s and cellulose. Oats 23’s fermentation resulted in a significant increase in the Bacteroides–Prevotella group. Oligofructose and Oats 25’s/26’s produced significant increases in Bifidobacterium in the latter stages of fermentation while numbers declined for Oats 23’s between 5 h and 24 h. This is possibly due to the smaller surface area of the larger flakes inhibiting the simulated digestion, which may have resulted in increased levels of resistant starch (Bifidobacterium are known to ferment this dietary fibre). Fermentation of Oat 25’s/26’s resulted in a propionate rich SCFA profile and a significant increase in butyrate, which have both been linked to benefiting host health. The smaller sized oats did not produce a significant increase in butyrate concentration. This study shows for the first time the impact of oat grain on the microbial ecology of the human gut and its potential to beneficially modulate the gut microbiota through increasing Bifidobacterium population.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Commensal bacteria, including some species of lactobacilli commonly present in human breast milk, appear to colonize the neonatal gut and contribute to protection against infant infections, suggesting that lactobacilli could potentially modulate immunity. In this study, we evaluated the potential of two Lactobacillus strains isolated from human milk to modulate the activation and cytokine profile of peripheral blood mononuclear cell (PBMC) subsets in vitro. Moreover, these effects were compared to the same probiotic species of non-milk origin. Lactobacillus salivarius CECT5713 and Lactobacillus fermentum CECT5716 at 105, 106 and 107 bacteria/mL were co-cultured with PBMC (106/mL) from 8 healthy donors for 24 h. Activation status (CD69 and CD25 expressions) of natural killer (NK) cells (CD56+), total T cells (CD3+), cytotoxic T cells (CD8+) and CD4+ T cells was determined by flow cytometry. Regulatory T cells (Treg) were also quantified by intracellular Foxp3 evaluation. Regarding innate immunity, NK cells were activated by addition of both Lactobacillus strains, and in particular, the CD8+ NK subset was preferentially induced to highly express CD69 (90%, p<0.05). With respect to acquired immunity, approximately 9% of CD8+ T cells became activated after co-cultivation with L. fermentum or L salivarius. Although CD4+ T cells demonstrated a weaker response, there was a preferential activation of Treg cells (CD4+CD25+Foxp3+) after exposure to both milk probiotic bacteria (p<0.05). Both strains significantly induced the production of a number of cytokines and chemokines, including TNFα, IL-1β, IL-8, MIP-1α, MIP-1β, and GM-CSF, but some strain-specific effects were apparent. This work demonstrates that L salivarius CECT5713 and L. fermentum CECT5716 enhanced both natural and acquired immune responses, as evidenced by the activation of NK and T cell subsets and the expansion of Treg cells, as well as the induction of a broad array of cytokines.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is now apparent that there is a strong link between health and nutrition and this can be seen clearly when we talk of obesity. The food industry is trying to capitalise on this by adapting high sugar/fat foods to become healthier alternatives. In confectionery food ingredients can be used for a range of purposes including sucrose replacement. Many of these ingredients may also evade digestion in the upper gut and be fermented by the gut microbiota upon entering the colon. This study was designed to screen a range of ingredients and their activities on the gut microbiota. In this study we screened a range of these ingredients in triplicate batch culture fermentations with known prebiotics as controls. Changes in bacteriology were monitored using FISH. SCFA were measured by GC and gas production was assessed during anaerobic batch fermentations. Bacterial enumeration showed significant increases (P ≤ 0.05) in bifidobacteria and lactobacilli with polydextrose and most polyols with no significant increases in Clostridium histolyticum/perfringens. SCFA and gas formation indicated that the substrates added to the fermenters were being utilised by the gut microbiota. It therefore appears these ingredients exert some prebiotic activity in vitro. Further studies, particularly in human volunteers, are necessary.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given the recent EU ban of antibiotics to promote the growth of farm animals, alternative approaches are needed for animal production systems. Tannins, which are already commercially marketed for animal nutrition, have bacteriostatic and bactericidal properties against pathogenic bacteria. The aim of this study was to investigate the inhibitory effect of various tannins against Salmonella Typhimurium (SL1344nal(r)) to identify potentially effective feed additives. Different sources of condensed and hydrolysable tannins were tested at concentrations between I and 6 mg ml(-1). The tannins tested were either commercial preparations or isolated from such preparations or from plants using Sephadex LH-20 based column chromatography. Some, but not all, of the tannins significantly decreased bacterial growth compared to tannin-free selenite cystine broth following incubation for 24 h at 37 degrees C. Gallotannins were especially effective and tara achieved 1.28 log(10) reductions after 24 hours. Antibacterial activity was also confirmed with inhibition zone diameters in a disc diffusion test. The experiments demonstrated that tannins may have potential as feed additives for reducing Salmonella infections in farm animals.