33 resultados para IPN HYDROGELS


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incorporation of small bioactive peptide motifs within robust hydrogels constitutes a facile procedure to chemically functionalise cell and tissue scaffolds. In this study, a novel approach to utilise Fmoc-linked peptide amphiphiles comprising the bio-functional cell-adhesion RGDS motif within biomimetic collagen gels was developed. The composite scaffolds thus created were shown to maintain the mechanical properties of the collagen gel while presenting additional bio-activity. In particular, these materials enhanced the adhesion and proliferation of viable human corneal stromal fibroblasts by 300% compared to nonfunctionalised gels. Furthermore, the incorporation of Fmoc-RGDS nanostructures within the collagen matrix significantly suppressed gel shrinkage resulting from the contractile action of encapsulated fibroblasts once activated by serum proteins. These mechanical and biological properties demonstrate that the incorporation of peptide amphiphiles provides a suitable and easy method to circumvent specific biomaterial limitations, such as cell-derived shrinkage, for improved performance in tissue engineering and regenerative medicine applications.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A dipeptide with a long fatty acid chain at its N-terminus gives hydrogels in phosphate buffer in the pH range 7.0–8.5. The hydrogel with a gelator concentration of 0.45% (w/v) at pH 7.46 (physiological pH) provides a very good platform to study dynamic changes within a supramolecular framework as it exhibits remarkable change in its appearance with time. Interestingly, the first formed transparent hydrogel gradually transforms into a turbid gel within 2 days. These two forms of the hydrogel have been thoroughly investigated by using small angle X-ray scattering (SAXS), powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FE-SEM) and high-resolution transmission electron microscopic (HR-TEM) imaging, FT-IR and rheometric analyses. The SAXS and low angle PXRD studies substantiate different packing arrangements for the gelator molecules for these two different gel states (the freshly prepared and the aged hydrogel). Moreover, rheological studies of these two gels reveal that the aged gel is stiffer than the freshly prepared gel.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we introduce dipeptides containing tryptophan N-capped with the nonsteroidal anti-inflammatory drug naproxen and C-terminal dehydroamino acids, dehydrophenylalanine (ΔPhe), dehydroaminobutyric acid (ΔAbu), and dehydroalanine (ΔAla) as efficacious protease resistant hydrogelators. Optimized conditions for gel formation are reported. Transmission electron microscopy experiments revealed that the hydrogels consist of networks of micro/nanosized fibers formed by peptide self-assembly. Fluorescence and circular dichroism spectroscopy indicate that the self-assembly process is driven by stacking interactions of the aromatic groups. The naphthalene groups of the naproxen moieties are highly organized in the fibers through chiral stacking. Rheological experiments demonstrated that the most hydrophobic peptide (containing C-terminal ΔPhe) formed more elastic gels at lower critical gelation concentrations. This gel revealed irreversible breakup, while the C-terminal ΔAbu and ΔAla gels, although less elastic, exhibited structural recovery and partial healing of the elastic properties. A potential antitumor thieno[3,2-b]pyridine derivative was incorporated (noncovalently) into the gel formed by the hydrogelator containing C-terminal ΔPhe residue. Fluorescence and Förster resonance energy transfer measurements indicate that the drug is located in a hydrophobic environment, near/associated with the peptide fibers, establishing this type of hydrogel as a good drug-nanocarrier candidate.