50 resultados para INDIRECT QUANTIFICATION


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The GABase assay is widely used to rapidly and accurately quantify levels of extracellular γ-aminobutyric acid (GABA). Here we demonstrate a modification of this assay that enables quantification of intracellular GABA in bacterial cells. Cells are lysed by boiling and ethanolamine-O-sulphate, a GABA transaminase inhibitor is used to distinguish between GABA and succinate semialdehyde.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, numerical analyses of the thermal performance of an indirect evaporative air cooler incorporating a M-cycle cross-flow heat exchanger has been carried out. The numerical model was established from solving the coupled governing equations for heat and mass transfer between the product and working air, using the finite-element method. The model was developed using the EES (Engineering Equation Solver) environment and validated by published experimental data. Correlation between the cooling (wet-bulb) effectiveness, system COP and a number of air flow/exchanger parameters was developed. It is found that lower channel air velocity, lower inlet air relative humidity, and higher working-to-product air ratio yielded higher cooling effectiveness. The recommended average air velocities in dry and wet channels should not be greater than 1.77 m/s and 0.7 m/s, respectively. The optimum flow ratio of working-to-product air for this cooler is 50%. The channel geometric sizes, i.e. channel length and height, also impose significant impact to system performance. Longer channel length and smaller channel height contribute to increase of the system cooling effectiveness but lead to reduced system COP. The recommend channel height is 4 mm and the dimensionless channel length, i.e., ratio of the channel length to height, should be in the range 100 to 300. Numerical study results indicated that this new type of M-cycle heat and mass exchanger can achieve 16.7% higher cooling effectiveness compared with the conventional cross-flow heat and mass exchanger for the indirect evaporative cooler. The model of this kind is new and not yet reported in literatures. The results of the study help with design and performance analyses of such a new type of indirect evaporative air cooler, and in further, help increasing market rating of the technology within building air conditioning sector, which is currently dominated by the conventional compression refrigeration technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper provides a comparative study of the performance of cross-flow and counter-flow M-cycle heat exchangers for dew point cooling. It is recognised that evaporative cooling systems offer a low energy alternative to conventional air conditioning units. Recently emerged dew point cooling, as the renovated evaporative cooling configuration, is claimed to have much higher cooling output over the conventional evaporative modes owing to use of the M-cycle heat exchangers. Cross-flow and counter-flow heat exchangers, as the available structures for M-cycle dew point cooling processing, were theoretically and experimentally investigated to identify the difference in cooling effectiveness of both under the parallel structural/operational conditions, optimise the geometrical sizes of the exchangers and suggest their favourite operational conditions. Through development of a dedicated computer model and case-by-case experimental testing and validation, a parametric study of the cooling performance of the counter-flow and cross-flow heat exchangers was carried out. The results showed the counter-flow exchanger offered greater (around 20% higher) cooling capacity, as well as greater (15%–23% higher) dew-point and wet-bulb effectiveness when equal in physical size and under the same operating conditions. The cross-flow system, however, had a greater (10% higher) Energy Efficiency (COP). As the increased cooling effectiveness will lead to reduced air volume flow rate, smaller system size and lower cost, whilst the size and cost are the inherent barriers for use of dew point cooling as the alternation of the conventional cooling systems, the counter-flow system is considered to offer practical advantages over the cross-flow system that would aid the uptake of this low energy cooling alternative. In line with increased global demand for energy in cooling of building, largely by economic booming of emerging developing nations and recognised global warming, the research results will be of significant importance in terms of promoting deployment of the low energy dew point cooling system, helping reduction of energy use in cooling of buildings and cut of the associated carbon emission.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During long-range transport, many distinct processes – including photochemistry, deposition, emissions and mixing – contribute to the transformation of air mass composition. Partitioning the effects of different processes can be useful when considering the sensitivity of chemical transformation to, for example, a changing environment or anthropogenic influence. However, transformation is not observed directly, since mixing ratios are measured, and models must be used to relate changes to processes. Here, four cases from the ITCT-Lagrangian 2004 experiment are studied. In each case, aircraft intercepted a distinct air mass several times during transport over the North Atlantic, providing a unique dataset and quantifying the net changes in composition from all processes. A new framework is presented to deconstruct the change in O3 mixing ratio (Δ O3) into its component processes, which were not measured directly, taking into account the uncertainty in measurements, initial air mass variability and its time evolution. The results show that the net chemical processing (Δ O3chem) over the whole simulation is greater than net physical processing (Δ O3phys) in all cases. This is in part explained by cancellation effects associated with mixing. In contrast, each case is in a regime of either net photochemical destruction (lower tropospheric transport) or production (an upper tropospheric biomass burning case). However, physical processes influence O3 indirectly through addition or removal of precursor gases, so that changes to physical parameters in a model can have a larger effect on Δ O3chem than Δ O3phys. Despite its smaller magnitude, the physical processing distinguishes the lower tropospheric export cases, since the net photochemical O3 change is −5 ppbv per day in all three cases. Processing is quantified using a Lagrangian photochemical model with a novel method for simulating mixing through an ensemble of trajectories and a background profile that evolves with them. The model is able to simulate the magnitude and variability of the observations (of O3, CO, NOy and some hydrocarbons) and is consistent with the time-average OH following air-masses inferred from hydrocarbon measurements alone (by Arnold et al., 2007). Therefore, it is a useful new method to simulate air mass evolution and variability, and its sensitivity to process parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

• UV-B radiation currently represents c. 1.5% of incoming solar radiation. However, significant changes are known to have occurred in the amount of incoming radiation both on recent and on geological timescales. Until now it has not been possible to reconstruct a detailed measure of UV-B radiation beyond c. 150 yr ago. • Here, we studied the suitability of fossil Pinus spp. pollen to record variations in UV-B flux through time. In view of the large size of the grain and its long fossil history, we hypothesized that this grain could provide a good proxy for recording past variations in UV-B flux. • Two key objectives were addressed: to determine whether there was, similar to other studied species, a clear relationship between UV-B-absorbing compounds in the sporopollenin of extant pollen and the magnitude of UV-B radiation to which it had been exposed; and to determine whether these compounds could be extracted from a small enough sample size of fossil pollen to make reconstruction of a continuous record through time a realistic prospect. • Preliminary results indicate the excellent potential of this species for providing a quantitative record of UV-B through time. Using this technique, we present the first record of UV-B flux during the last 9500 yr from a site near Bergen, Norway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main uncertainty in anthropogenic forcing of the Earth’s climate stems from pollution aerosols, particularly their ‘‘indirect effect’’ whereby aerosols modify cloud properties. We develop a new methodology to derive a measurement-based estimate using almost exclusively information from an Earth radiation budget instrument (CERES) and a radiometer (MODIS). We derive a statistical relationship between planetary albedo and cloud properties, and, further, between the cloud properties and column aerosol concentration. Combining these relationships with a data set of satellite-derived anthropogenic aerosol fraction, we estimate an anthropogenic radiative forcing of �-0.9 ± 0.4 Wm�-2 for the aerosol direct effect and of �-0.2 ± 0.1 Wm�-2 for the cloud albedo effect. Because of uncertainties in both satellite data and the method, the uncertainty of this result is likely larger than the values given here which correspond only to the quantifiable error estimates. The results nevertheless indicate that current global climate models may overestimate the cloud albedo effect.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aerosol indirect effects continue to constitute one of the most important uncertainties for anthropogenic climate perturbations. Within the international AEROCOM initiative, the representation of aerosol-cloud-radiation interactions in ten different general circulation models (GCMs) is evaluated using three satellite datasets. The focus is on stratiform liquid water clouds since most GCMs do not include ice nucleation effects, and none of the model explicitly parameterises aerosol effects on convective clouds. We compute statistical relationships between aerosol optical depth (τa) and various cloud and radiation quantities in a manner that is consistent between the models and the satellite data. It is found that the model-simulated influence of aerosols on cloud droplet number concentration (Nd ) compares relatively well to the satellite data at least over the ocean. The relationship between �a and liquid water path is simulated much too strongly by the models. This suggests that the implementation of the second aerosol indirect effect mainly in terms of an autoconversion parameterisation has to be revisited in the GCMs. A positive relationship between total cloud fraction (fcld) and �a as found in the satellite data is simulated by the majority of the models, albeit less strongly than that in the satellite data in most of them. In a discussion of the hypotheses proposed in the literature to explain the satellite-derived strong fcld–�a relationship, our results indicate that none can be identified as a unique explanation. Relationships similar to the ones found in satellite data between �a and cloud top temperature or outgoing long-wave radiation (OLR) are simulated by only a few GCMs. The GCMs that simulate a negative OLR - �a relationship show a strong positive correlation between �a and fcld. The short-wave total aerosol radiative forcing as simulated by the GCMs is strongly influenced by the simulated anthropogenic fraction of �a, and parameterisation assumptions such as a lower bound on Nd . Nevertheless, the strengths of the statistical relationships are good predictors for the aerosol forcings in the models. An estimate of the total short-wave aerosol forcing inferred from the combination of these predictors for the modelled forcings with the satellite-derived statistical relationships yields a global annual mean value of −1.5±0.5Wm−2. In an alternative approach, the radiative flux perturbation due to anthropogenic aerosols can be broken down into a component over the cloud-free portion of the globe (approximately the aerosol direct effect) and a component over the cloudy portion of the globe (approximately the aerosol indirect effect). An estimate obtained by scaling these simulated clearand cloudy-sky forcings with estimates of anthropogenic �a and satellite-retrieved Nd–�a regression slopes, respectively, yields a global, annual-mean aerosol direct effect estimate of −0.4±0.2Wm−2 and a cloudy-sky (aerosol indirect effect) estimate of −0.7±0.5Wm−2, with a total estimate of −1.2±0.4Wm−2.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In their contribution to PNAS, Penner et al. (1) used a climate model to estimate the radiative forcing by the aerosol first indirect effect (cloud albedo effect) in two different ways: first, by deriving a statistical relationship between the logarithm of cloud droplet number concentration, ln Nc, and the logarithm of aerosol optical depth, ln AOD (or the logarithm of the aerosol index, ln AI) for present-day and preindustrial aerosol fields, a method that was applied earlier to satellite data (2), and, second, by computing the radiative flux perturbation between two simulations with and without anthropogenic aerosol sources. They find a radiative forcing that is a factor of 3 lower in the former approach than in the latter [as Penner et al. (1) correctly noted, only their “inline” results are useful for the comparison]. This study is a very interesting contribution, but we believe it deserves several clarifications.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Natural aerosol plays a significant role in the Earth’s system due to its ability to alter the radiative balance of the Earth. Here we use a global aerosol microphysics model together with a radiative transfer model to estimate radiative effects for five natural aerosol sources in the present-day atmosphere: dimethyl sulfide (DMS), sea-salt, volcanoes, monoterpenes, and wildfires. We calculate large annual global mean aerosol direct and cloud albedo effects especially for DMS-derived sulfate (–0.23 Wm–2 and –0.76 Wm–2, respectively), volcanic sulfate (–0.21 Wm–2 and –0.61 Wm–2) and sea-salt (–0.44 Wm–2 and –0.04 Wm–2). The cloud albedo effect responds nonlinearly to changes in emission source strengths. The natural sources have both markedly different radiative efficiencies and indirect/direct radiative effect ratios. Aerosol sources that contribute a large number of small particles (DMS-derived and volcanic sulfate) are highly effective at influencing cloud albedo per unit of aerosol mass burden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Slabakova (2006b) poses and directly addresses the question of whether or not there is a maturational effect (a critical/sensitive period) that affects the semantic component. She demonstrates that there is no empirical evidence suggesting that adults are unable to acquire phrasal semantic properties, even when the accessing of semantic universals is conditioned upon the acquisition of L2 morphosyntactic features (see Dekydtspotter and Sprouse 2001, Slabakova and Montrul 2003). In light of this, the authors test for interpretive properties associated with the aspectual projection higher (outer) AspP in advanced English learners of adult L2 Portuguese via their knowledge of [+/- accidental] related nuances in adverbially quantified preterit and imperfect sentences (Lenci and Bertinetto 2000; Menéndez-Benito 2002). In two experiments, the authors test for L2 knowledge of this [+/- accidental] distinction via semantic felicitousness judgments of adverbially quantified preterit and imperfect sentences depending on a supporting context as well as related restrictions on subject DP interpretations. Overall, the data show that advanced learners acquire this distinction. As the authors discuss, the present data support Full Access theories (White 1989, Schwartz and Sprouse 1996; Duffield and White 1999) and the No-Critical Period for semantics position (Slabakova 2006b), demonstrating that the syntax-semantics interface is not an inevitable locus for fossilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We study individual decision making in a lottery-choice task performed by three different populations: gamblers under psychological treatment ("addicts"), gamblers’ spouses ("victims"), and people who are neither gamblers or gamblers’ spouses ("normals"). We find that addicts are willing to take less risk than normals, but the difference is smaller as a gambler’s time under treatment increases. The large majority of victims report themselves unwilling to take any risk at all. However, addicts in the first year of treatment react more than other addicts to the different values of the risk-return parameter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Speculative bubbles are generated when investors include the expectation of the future price in their information set. Under these conditions, the actual market price of the security, that is set according to demand and supply, will be a function of the future price and vice versa. In the presence of speculative bubbles, positive expected bubble returns will lead to increased demand and will thus force prices to diverge from their fundamental value. This paper investigates whether the prices of UK equity-traded property stocks over the past 15 years contain evidence of a speculative bubble. The analysis draws upon the methodologies adopted in various studies examining price bubbles in the general stock market. Fundamental values are generated using two models: the dividend discount and the Gordon growth. Variance bounds tests are then applied to test for bubbles in the UK property asset prices. Finally, cointegration analysis is conducted to provide further evidence on the presence of bubbles. Evidence of the existence of bubbles is found, although these appear to be transitory and concentrated in the mid-to-late 1990s.