98 resultados para Human-Machine Interaction
Resumo:
With the advance of information technology capabilities, and the importance of human computer interfaces within society there has been a significant increase in research activity within the field of human computer interaction (HCI). This paper summarizes some of the work undertaken to date, paying particular attention to methods applicable to on-line control and monitoring systems such as those employed by The National Grid Company plc.
Resumo:
Many older adults wish to gain competence in using a computer, but many application interfaces are perceived as complex and difficult to use, deterring potential users from investing the time to learn them. Hence, this study looks at the potential of ‘familiar’ interface design which builds upon users’ knowledge of real world interactions, and applies existing skills to a new domain. Tools are provided in the form of familiar visual objects, and manipulated like real-world counterparts, rather than with buttons, icons and menus found in classic WIMP interfaces. This paper describes the formative evaluation of computer interactions that are based upon familiar real world tasks, which supports multitouch interaction, involves few buttons and icons, no menus, no right-clicks or double-clicks and no dialogs. Using an example of an email client to test the principles of using “familiarity”, the initial feedback was very encouraging, with 3 of the 4 participants being able to undertake some of the basic email tasks with no prior training and little or no help. The feedback has informed a number of refinements of the design principles, such as providing clearer affordance for visual objects. A full study is currently underway.
Resumo:
In this article, four different practical experiments in robotics and human/machine merger are firstly described and then considered with regard to their ethical implications. Results from the experiments are discussed in terms of their meaning and application possibilities. The article is written from the perspective of scientific experimentation, opening up realistic possibilities to be faced in the future rather than giving conclusive comments on the technologies employed. Human implantation and the merger of biology and technology are key elements.
Resumo:
This research presents a novel multi-functional system for medical Imaging-enabled Assistive Diagnosis (IAD). Although the IAD demonstrator has focused on abdominal images and supports the clinical diagnosis of kidneys using CT/MRI imaging, it can be adapted to work on image delineation, annotation and 3D real-size volumetric modelling of other organ structures such as the brain, spine, etc. The IAD provides advanced real-time 3D visualisation and measurements with fully automated functionalities as developed in two stages. In the first stage, via the clinically driven user interface, specialist clinicians use CT/MRI imaging datasets to accurately delineate and annotate the kidneys and their possible abnormalities, thus creating “3D Golden Standard Models”. Based on these models, in the second stage, clinical support staff i.e. medical technicians interactively define model-based rules and parameters for the integrated “Automatic Recognition Framework” to achieve results which are closest to that of the clinicians. These specific rules and parameters are stored in “Templates” and can later be used by any clinician to automatically identify organ structures i.e. kidneys and their possible abnormalities. The system also supports the transmission of these “Templates” to another expert for a second opinion. A 3D model of the body, the organs and their possible pathology with real metrics is also integrated. The automatic functionality was tested on eleven MRI datasets (comprising of 286 images) and the 3D models were validated by comparing them with the metrics from the corresponding “3D Golden Standard Models”. The system provides metrics for the evaluation of the results, in terms of Accuracy, Precision, Sensitivity, Specificity and Dice Similarity Coefficient (DSC) so as to enable benchmarking of its performance. The first IAD prototype has produced promising results as its performance accuracy based on the most widely deployed evaluation metric, DSC, yields 97% for the recognition of kidneys and 96% for their abnormalities; whilst across all the above evaluation metrics its performance ranges between 96% and 100%. Further development of the IAD system is in progress to extend and evaluate its clinical diagnostic support capability through development and integration of additional algorithms to offer fully computer-aided identification of other organs and their abnormalities based on CT/MRI/Ultra-sound Imaging.
Resumo:
In recent years, the potential role of planned, internal resettlement as a climate change adaptation measure has been highlighted by national governments and the international policy community. However, in many developing countries, resettlement is a deeply political process that often results in an unequal distribution of costs and benefits amongst relocated persons. This paper examines these tensions in Mozambique, drawing on a case study of flood-affected communities in the Lower Zambezi River valley. It takes a political ecology approach – focusing on discourses of human-environment interaction, as well as the power relationships that are supported by such discourses – to show how a dominant narrative of climate change-induced hazards for small-scale farmers is contributing to their involuntary resettlement to higher-altitude, less fertile areas of land. These forced relocations are buttressed by a series of wider economic and political interests in the Lower Zambezi River region, such dam construction for hydroelectric power generation and the extension of control over rural populations, from which resettled people derive little direct benefit. Rather than engaging with these challenging issues, most international donors present in the country accept the ‘inevitability’ of extreme weather impacts and view resettlement as an unfortunate and, in some cases, necessary step to increase people’s ‘resilience’, thus rationalising the top-down imposition of unpopular social policies. The findings add weight to the argument that a depoliticised interpretation of climate change can deflect attention away from underlying drivers of vulnerability and poverty, as well as obscure the interests of governments that are intent on reordering poor and vulnerable populations.
Resumo:
Building designs regularly fail to achieve the anticipated levels of in-use energy consumption. The interaction of occupants with building controls is often cited as a key factor behind this discrepancy. This paper examines whether one factor in inadvertent energy consumption might be the appearance of post-completion errors (when an intended action is not taken because a primary goal has already been accomplished) in occupants’ interactions with building controls. Post-completion errors have been widely studied in human-computer interaction but the concept has not previously been applied to the interaction of occupants with building controls. Two experiments were carried out to examine the effect of incorporating two different types of simple prompt to reduce post-completion error in the use of light switches in office meeting rooms. Results showed that the prompts were effective and that occupants switched off lights when leaving the room more often when presented with a normative prompt than with a standard injunction. Additionally, an over reliance on PIR sensors to turn off lights after meetings was observed, which reduced their intended energy savings. We conclude that achieving low carbon buildings in practice is not solely a technological issue and that application of user-models from human-computer interaction will encourage appropriate occupant interaction with building controls and help reduce inadvertent energy consumption.
Resumo:
This paper describes an approach to teaching and learning that combines elements of ludic engagement, gamification and digital creativity in order to make the learning of a serious subject a fun, interactive and inclusive experience for students regardless of their gender, age, culture, experience or any disabilities that they may have. This approach has been successfully used to teach software engineering to first year students but could in principle be transferred to any subject or discipline.
Resumo:
The persuasive design of e-commerce websites has been shown to support people with online purchases. Therefore, it is important to understand how persuasive applications are used and assimilated into e-commerce website designs. This paper demonstrates how the PSD model’s persuasive features could be used to build a bridge supporting the extraction and evaluation of persuasive features in such e-commerce websites; thus practically explaining how feature implementation can enhance website persuasiveness. To support a deeper understanding of persuasive e-commerce website design, this research, using the Persuasive Systems Design (PSD) model, identifies the distinct persuasive features currently assimilated in ten successful e-commerce websites. The results revealed extensive use of persuasive features; particularly features related to dialogue support, credibility support, and primary task support; thus highlighting weaknesses in the implementation of social support features. In conclusion we suggest possible ways for enhancing persuasive feature implementation via appropriate contextual examples and explanation.
Resumo:
Subdermal magnetic implants originated as an art form in the world of body modification. To date an in depth scientific analysis of the benefits of this implant has yet to be established. This research explores the concept of sensory extension of the tactile sense utilising this form of implantation. This relatively simple procedure enables the tactile sense to respond to static and alternating magnetic fields. This is not to say that the underlying biology of the system has changed; i.e. the concept does not increase our tactile frequency response range or sensitivity to pressure, but now does invoke a perceptual response to a stimulus that is not innately available to humans. Within this research two social surveys have been conducted in order to ascertain one, the social acceptance of the general notion of human enhancement, and two the perceptual experiences of individuals with the magnetic implants themselves. In terms of acceptance to the notion of sensory improvement (via implantation) ~39% of the general population questioned responded positively with a further ~25% of the respondents answering with the indecisive response. Thus with careful dissemination a large proportion of individuals may adopt this technology much like this if it were to become available for consumers. Interestingly of the responses collected from the magnetic implants survey ~60% of the respondents actually underwent the implant for magnetic vision purposes. The main contribution of this research however comes from a series of psychophysical testing. In which 7 subjects with subdermal magnetic implants, were cross compared with 7 subjects that had similar magnets superficially attached to their dermis. The experimentation examined multiple psychometric thresholds of the candidates including intensity, frequency and temporal. Whilst relatively simple, the experimental setup for the perceptual experimentation conducted was novel in that custom hardware and protocols were created in order to determine the subjective thresholds of the individuals. Abstract iv The overall purpose of this research is to utilise this concept in high stress scenarios, such as driving or piloting; whereby alerts and warnings could be relayed to an operator without intruding upon their other (typically overloaded) exterior senses (i.e. the auditory and visual senses). Hence each of the thresholding experiments were designed with the intention of utilising the results in the design of signals for information transfer. The findings from the study show that the implanted group of subjects significantly outperformed the superficial group in the absolute intensity threshold experiment, i.e. the implanted group required significantly less force than the superficial group in order to perceive the stimulus. The results for the frequency difference threshold showed no significant difference in the two groups tested. Interestingly however at low frequencies, i.e. 20 and 50 Hz, the ability of the subjects tested to discriminate frequencies significantly increased with more complex waveforms i.e. square and sawtooth, when compared against the typically used sinewave. Furthermore a novel protocol for establishing the temporal gap detection threshold during a temporal numerosity study has been established in this thesis. This experiment measured the subjects’ capability to correctly determine the number of concatenated signals presented to them whilst the time between the signals, referred to as pulses, tended to zero. A significant finding was that when altering the length of, the frequency of, and the number of cycles of the pulses, the time between pulses for correct recognition altered. This finding will ultimately aid in the design of the tactile alerts for this method of information transfer. Preliminary development work for the use of this method of input to the body, in an automotive scenario, is also presented within this thesis in the form of a driving simulation. The overall goal of which is to present warning alerts to a driver, such as rear-to-end collision, or excessive speeds on roads, in order to prevent incidents and penalties from occurring. Discussion on the broader utility of this implant has been presented, reflecting on its potential use as a basis for vibrotactile, and sensory substitution, devices. This discussion furthers with postulations on its use as a human machine interface, as well as how a similar implant could be used within the ear as a hearing aid device.
Resumo:
The nicotinic Acetylcholine Receptor (nAChR) is the major class of neurotransmitter receptors that is involved in many neurodegenerative conditions such as schizophrenia, Alzheimer's and Parkinson's diseases. The N-terminal region or Ligand Binding Domain (LBD) of nAChR is located at pre- and post-synaptic nervous system, which mediates synaptic transmission. nAChR acts as the drug target for agonist and competitive antagonist molecules that modulate signal transmission at the nerve terminals. Based on Acetylcholine Binding Protein (AChBP) from Lymnea stagnalis as the structural template, the homology modeling approach was carried out to build three dimensional model of the N-terminal region of human alpha(7)nAChR. This theoretical model is an assembly of five alpha(7) subunits with 5 fold axis symmetry, constituting a channel, with the binding picket present at the interface region of the subunits. alpha-netlrotoxin is a potent nAChR competitive antagonist that readily blocks the channel resulting in paralysis. The molecular interaction of alpha-Bungarotoxin, a long chain alpha-neurotoxin from (Bungarus multicinctus) and human alpha(7)nAChR seas studied. Agonists such as acetylcholine, nicotine, which are used in it diverse array of biological activities, such as enhancements of cognitive performances, were also docked with the theoretical model of human alpha(7)nAChR. These docked complexes were analyzed further for identifying the crucial residues involved in interaction. These results provide the details of interaction of agonists and competitive antagonists with three dimensional model of the N-terminal region of human alpha(7)nAChR and thereby point to the design of novel lead compounds.
Resumo:
Interaction of G-protein-coupled receptors with beta-arrestins is an important step in receptor desensitization and in triggering "alternative" signals. By means of confocal microscopy and fluorescence resonance energy transfer, we have investigated the internalization of the human P2Y receptors 1, 2, 4, 6, 11, and 12 and their interaction with beta-arrestin-1 and -2. Co-transfection of each individual P2Y receptor with beta-arrestin-1-GFP or beta-arrestin-2-YFP into HEK-293 cells and stimulation with the corresponding agonists resulted in a receptor-specific interaction pattern. The P2Y(1) receptor stimulated with ADP strongly translocated beta-arrestin-2-YFP, whereas only a slight translocation was observed for beta-arrestin-1-GFP. The P2Y(4) receptor exhibited equally strong translocation for beta-arrestin-1-GFP and beta-arrestin-2YFP when stimulated with UTP. The P2Y(6), P2Y(11), and P2Y(12) receptor internalized only when GRK2 was additionally cotransfected, but beta-arrestin translocation was only visible for the P2Y(6) and P2Y(11) receptor. The P2Y(2) receptor showed a beta-arrestin translocation pattern that was dependent on the agonist used for stimulation. UTP translocated beta-arrestin-1-GFP and beta-arrestin-2-YFP equally well, whereas ATP translocated beta-arrestin-1-GFP to a much lower extent than beta-arrestin2- YFP. The same agonist-dependent pattern was seen in fluorescence resonance energy transfer experiments between the fluorescently labeled P2Y(2) receptor and beta-arrestins. Thus, the P2Y(2) receptor would be classified as a class A receptor when stimulated with ATP or as a class B receptor when stimulated with UTP. The ligand-specific recruitment of beta-arrestins by ATP and UTP stimulation of P2Y(2) receptors was further found to result in differential stimulation of ERK phosphorylation. This suggests that the two different agonists induce distinct active states of this receptor that show differential interactions with beta-arrestins.
Resumo:
This paper presents results to indicate the potential applications of a direct connection between the human nervous system and a computer network. Actual experimental results obtained from a human subject study are given, with emphasis placed on the direct interaction between the human nervous system and possible extra-sensory input. An brief overview of the general state of neural implants is given, as well as a range of application areas considered. An overall view is also taken as to what may be possible with implant technology as a general purpose human-computer interface for the future.
Resumo:
In this paper a look is taken at how the use of implant technology can be used to either increase the range of the abilities of a human and/or diminish the effects of a neural illness, such as Parkinson's Disease. The key element is the need for a clear interface linking the human brain directly with a computer. The area of interest here is the use of implant technology, particularly where a connection is made between technology and the human brain and/or nervous system. Pilot tests and experimentation are invariably carried out apriori to investigate the eventual possibilities before human subjects are themselves involved. Some of the more pertinent animal studies are discussed here. The paper goes on to describe human experimentation, in particular that carried out by the author himself, which led to him receiving a neural implant which linked his nervous system bi-directionally with the internet. With this in place neural signals were transmitted to various technological devices to directly control them. In particular, feedback to the brain was obtained from the fingertips of a robot hand and ultrasonic (extra) sensory input. A view is taken as to the prospects for the future, both in the near term as a therapeutic device and in the long term as a form of enhancement.