138 resultados para Homeostasis Model Assessment
Resumo:
It is increasingly accepted that any possible climate change will not only have an influence on mean climate but may also significantly alter climatic variability. A change in the distribution and magnitude of extreme rainfall events (associated with changing variability), such as droughts or flooding, may have a far greater impact on human and natural systems than a changing mean. This issue is of particular importance for environmentally vulnerable regions such as southern Africa. The sub-continent is considered especially vulnerable to and ill-equipped (in terms of adaptation) for extreme events, due to a number of factors including extensive poverty, famine, disease and political instability. Rainfall variability and the identification of rainfall extremes is a function of scale, so high spatial and temporal resolution data are preferred to identify extreme events and accurately predict future variability. The majority of previous climate model verification studies have compared model output with observational data at monthly timescales. In this research, the assessment of ability of a state of the art climate model to simulate climate at daily timescales is carried out using satellite-derived rainfall data from the Microwave Infrared Rainfall Algorithm (MIRA). This dataset covers the period from 1993 to 2002 and the whole of southern Africa at a spatial resolution of 0.1° longitude/latitude. This paper concentrates primarily on the ability of the model to simulate the spatial and temporal patterns of present-day rainfall variability over southern Africa and is not intended to discuss possible future changes in climate as these have been documented elsewhere. Simulations of current climate from the UKMeteorological Office Hadley Centre’s climate model, in both regional and global mode, are firstly compared to the MIRA dataset at daily timescales. Secondly, the ability of the model to reproduce daily rainfall extremes is assessed, again by a comparison with extremes from the MIRA dataset. The results suggest that the model reproduces the number and spatial distribution of rainfall extremes with some accuracy, but that mean rainfall and rainfall variability is underestimated (over-estimated) over wet (dry) regions of southern Africa.
Resumo:
The IntFOLD-TS method was developed according to the guiding principle that the model quality assessment would be the most critical stage for our template based modelling pipeline. Thus, the IntFOLD-TS method firstly generates numerous alternative models, using in-house versions of several different sequence-structure alignment methods, which are then ranked in terms of global quality using our top performing quality assessment method – ModFOLDclust2. In addition to the predicted global quality scores, the predictions of local errors are also provided in the resulting coordinate files, using scores that represent the predicted deviation of each residue in the model from the equivalent residue in the native structure. The IntFOLD-TS method was found to generate high quality 3D models for many of the CASP9 targets, whilst also providing highly accurate predictions of their per-residue errors. This important information may help to make the 3D models that are produced by the IntFOLD-TS method more useful for guiding future experimental work
Resumo:
The requirement to forecast volcanic ash concentrations was amplified as a response to the 2010 Eyjafjallajökull eruption when ash safety limits for aviation were introduced in the European area. The ability to provide accurate quantitative forecasts relies to a large extent on the source term which is the emissions of ash as a function of time and height. This study presents source term estimations of the ash emissions from the Eyjafjallajökull eruption derived with an inversion algorithm which constrains modeled ash emissions with satellite observations of volcanic ash. The algorithm is tested with input from two different dispersion models, run on three different meteorological input data sets. The results are robust to which dispersion model and meteorological data are used. Modeled ash concentrations are compared quantitatively to independent measurements from three different research aircraft and one surface measurement station. These comparisons show that the models perform reasonably well in simulating the ash concentrations, and simulations using the source term obtained from the inversion are in overall better agreement with the observations (rank correlation = 0.55, Figure of Merit in Time (FMT) = 25–46%) than simulations using simplified source terms (rank correlation = 0.21, FMT = 20–35%). The vertical structures of the modeled ash clouds mostly agree with lidar observations, and the modeled ash particle size distributions agree reasonably well with observed size distributions. There are occasionally large differences between simulations but the model mean usually outperforms any individual model. The results emphasize the benefits of using an ensemble-based forecast for improved quantification of uncertainties in future ash crises.
Resumo:
Motivation: The ability of a simple method (MODCHECK) to determine the sequence–structure compatibility of a set of structural models generated by fold recognition is tested in a thorough benchmark analysis. Four Model Quality Assessment Programs (MQAPs) were tested on 188 targets from the latest LiveBench-9 automated structure evaluation experiment. We systematically test and evaluate whether the MQAP methods can successfully detect native-likemodels. Results: We show that compared with the other three methods tested MODCHECK is the most reliable method for consistently performing the best top model selection and for ranking the models. In addition, we show that the choice of model similarity score used to assess a model's similarity to the experimental structure can influence the overall performance of these tools. Although these MQAP methods fail to improve the model selection performance for methods that already incorporate protein three dimension (3D) structural information, an improvement is observed for methods that are purely sequence-based, including the best profile–profile methods. This suggests that even the best sequence-based fold recognition methods can still be improved by taking into account the 3D structural information.
Resumo:
Motivation: Modelling the 3D structures of proteins can often be enhanced if more than one fold template is used during the modelling process. However, in many cases, this may also result in poorer model quality for a given target or alignment method. There is a need for modelling protocols that can both consistently and significantly improve 3D models and provide an indication of when models might not benefit from the use of multiple target-template alignments. Here, we investigate the use of both global and local model quality prediction scores produced by ModFOLDclust2, to improve the selection of target-template alignments for the construction of multiple-template models. Additionally, we evaluate clustering the resulting population of multi- and single-template models for the improvement of our IntFOLD-TS tertiary structure prediction method. Results: We find that using accurate local model quality scores to guide alignment selection is the most consistent way to significantly improve models for each of the sequence to structure alignment methods tested. In addition, using accurate global model quality for re-ranking alignments, prior to selection, further improves the majority of multi-template modelling methods tested. Furthermore, subsequent clustering of the resulting population of multiple-template models significantly improves the quality of selected models compared with the previous version of our tertiary structure prediction method, IntFOLD-TS.
Resumo:
An in vitro colon extended physiologically based extraction test (CEPBET) which incorporates human gastrointestinal tract (GIT) parameters (including pH and chemistry, solid-to-fluid ratio, mixing and emptying rates) was applied for the first time to study the bioaccessibility of brominated flame retardants (BFRs) from the 3 main GIT compartments (stomach, small intestine and colon) following ingestion of indoor dust. Results revealed the bioaccessibility of γ-HBCD (72%) was less than that for α- and β-isomers (92% and 80% respectively) which may be attributed to the lower aqueous solubility of the γ-isomer (2 μg L−1) compared to the α- and β-isomers (45 and 15 μg L−1 respectively). No significant change in the enantiomeric fractions of HBCDs was observed in any of the studied samples. However, this does not completely exclude the possibility of in vivo enantioselective absorption of HBCDs, as the GIT cell lining and bacterial flora – which may act enantioselectively – are not included in the current CE-PBET model. While TBBP-A was almost completely (94%) bioaccessible, BDE-209 was the least (14%) bioaccessible of the studied BFRs. Bioaccessibility of tri-hepta BDEs ranged from 32–58%. No decrease in the bioaccessibility with increasing level of bromination was observed in the studied PBDEs.
Resumo:
In this study a gridded hourly 1-km precipitation dataset for a meso-scale catchment (4,062 km2) of the Upper Severn River, UK was constructed using rainfall radar data to disaggregate a daily precipitation (rain gauge) dataset. The dataset was compared to an hourly precipitation dataset created entirely from rainfall radar data. Results found that when assessed against gauge readings and as input to the Lisflood-RR hydrological model, the rain gauge/radar disaggregated dataset performed the best suggesting that this simple method of combining rainfall radar data with rain gauge readings can provide temporally detailed precipitation datasets for calibrating hydrological models.
Resumo:
Simulations of the stratosphere from thirteen coupled chemistry-climate models (CCMs) are evaluated to provide guidance for the interpretation of ozone predictions made by the same CCMs. The focus of the evaluation is on how well the fields and processes that are important for determining the ozone distribution are represented in the simulations of the recent past. The core period of the evaluation is from 1980 to 1999 but long-term trends are compared for an extended period (1960–2004). Comparisons of polar high-latitude temperatures show that most CCMs have only small biases in the Northern Hemisphere in winter and spring, but still have cold biases in the Southern Hemisphere spring below 10 hPa. Most CCMs display the correct stratospheric response of polar temperatures to wave forcing in the Northern, but not in the Southern Hemisphere. Global long-term stratospheric temperature trends are in reasonable agreement with satellite and radiosonde observations. Comparisons of simulations of methane, mean age of air, and propagation of the annual cycle in water vapor show a wide spread in the results, indicating differences in transport. However, for around half the models there is reasonable agreement with observations. In these models the mean age of air and the water vapor tape recorder signal are generally better than reported in previous model intercomparisons. Comparisons of the water vapor and inorganic chlorine (Cly) fields also show a large intermodel spread. Differences in tropical water vapor mixing ratios in the lower stratosphere are primarily related to biases in the simulated tropical tropopause temperatures and not transport. The spread in Cly, which is largest in the polar lower stratosphere, appears to be primarily related to transport differences. In general the amplitude and phase of the annual cycle in total ozone is well simulated apart from the southern high latitudes. Most CCMs show reasonable agreement with observed total ozone trends and variability on a global scale, but a greater spread in the ozone trends in polar regions in spring, especially in the Arctic. In conclusion, despite the wide range of skills in representing different processes assessed here, there is sufficient agreement between the majority of the CCMs and the observations that some confidence can be placed in their predictions.
Resumo:
The term ecosystem has been used to describe complex interactions between living organisms and the physical world. The principles underlying ecosystems can also be applied to complex human interactions in the digital world. As internet technologies make an increasing contribution to teaching and learning practice in higher education, the principles of digital ecosystems may help us understand how to maximise technology to benefit active, self-regulated learning especially among groups of learners. Here, feedback on student learning is presented within a conceptual digital ecosystems model of learning. Additionally, we have developed a Web 2.0-based system, called ASSET, which incorporates multimedia and social networking features to deliver assessment feedback within the functionality of the digital ecosystems model. Both the digital ecosystems model and the ASSET system are described and their implications for enhancing feedback on student learning are discussed.
Resumo:
Radiometric data in the visible domain acquired by satellite remote sensing have proven to be powerful for monitoring the states of the ocean, both physical and biological. With the help of these data it is possible to understand certain variations in biological responses of marine phytoplankton on ecological time scales. Here, we implement a sequential data-assimilation technique to estimate from a conventional nutrient–phytoplankton–zooplankton (NPZ) model the time variations of observed and unobserved variables. In addition, we estimate the time evolution of two biological parameters, namely, the specific growth rate and specific mortality of phytoplankton. Our study demonstrates that: (i) the series of time-varying estimates of specific growth rate obtained by sequential data assimilation improves the fitting of the NPZ model to the satellite-derived time series: the model trajectories are closer to the observations than those obtained by implementing static values of the parameter; (ii) the estimates of unobserved variables, i.e., nutrient and zooplankton, obtained from an NPZ model by implementation of a pre-defined parameter evolution can be different from those obtained on applying the sequences of parameters estimated by assimilation; and (iii) the maximum estimated specific growth rate of phytoplankton in the study area is more sensitive to the sea-surface temperature than would be predicted by temperature-dependent functions reported previously. The overall results of the study are potentially useful for enhancing our understanding of the biological response of phytoplankton in a changing environment.
Resumo:
A new model has been developed for assessing multiple sources of nitrogen in catchments. The model (INCA) is process based and uses reaction kinetic equations to simulate the principal mechanisms operating. The model allows for plant uptake, surface and sub-surface pathways and can simulate up to six land uses simultaneously. The model can be applied to catchment as a semi-distributed simulation and has an inbuilt multi-reach structure for river systems. Sources of nitrogen can be from atmospheric deposition, from the terrestrial environment (e.g. agriculture, leakage from forest systems etc.), from urban areas or from direct discharges via sewage or intensive farm units. The model is a daily simulation model and can provide information in the form of time series at key sites, or as profiles down river systems or as statistical distributions. The process model is described and in a companion paper the model is applied to the River Tywi catchment in South Wales and the Great Ouse in Bedfordshire.
Resumo:
Risk assessment for mammals is currently based on external exposure measurements, but effects of toxicants are better correlated with the systemically available dose than with the external administered dose. So for risk assessment of pesticides, toxicokinetics should be interpreted in the context of potential exposure in the field taking account of the timescale of exposure and individual patterns of feeding. Internal concentration is the net result of absorption, distribution, metabolism and excretion (ADME). We present a case study for thiamethoxam to show how data from ADME study on rats can be used to parameterize a body burden model which predicts body residue levels after exposures to LD50 dose either as a bolus or eaten at different feeding rates. Kinetic parameters were determined in male and female rats after an intravenous and oral administration of 14C labelled by fitting one-compartment models to measured pesticide concentrations in blood for each individual separately. The concentration of thiamethoxam in blood over time correlated closely with concentrations in other tissues and so was considered representative of pesticide concentration in the whole body. Body burden model simulations showed that maximum body weight-normalized doses of thiamethoxam were lower if the same external dose was ingested normally than if it was force fed in a single bolus dose. This indicates lower risk to rats through dietary exposure than would be estimated from the bolus LD50. The importance of key questions that should be answered before using the body burden approach in risk assessment, data requirements and assumptions made in this study are discussed in detail.
Resumo:
The impact of doubled CO2 concentration on the Asian summer monsoon is studied using a coupled ocean-atmosphere model. Both the mean seasonal precipitation and interannual monsoon variability are found to increase in the future climate scenario presented. Systematic biases in current climate simulations of the coupled system prevent accurate representation of the monsoon-ENSO teleconnection, of prime importance for seasonal prediction and for determining monsoon interannual variability. By applying seasonally varying heat flux adjustments to the tropical Pacific and Indian Ocean surface in the future climate simulation, some assessment can be made of the impact of systematic model biases on future climate predictions. In simulations where the flux adjustments are implemented, the response to climate change is magnified, with the suggestion that systematic biases may be masking the true impact of increased greenhouse gas forcing. The teleconnection between ENSO and the Asian summer monsoon remains robust in the future climate, although the Indo-Pacific takes on more of a biennial character for long periods of the flux-adjusted simulation. Assessing the teleconnection across interdecadal timescales shows wide variations in its amplitude, despite the absence of external forcing. This suggests that recent changes in the observed record cannot be distinguished from internal variations and as such are not necessarily related to climate change.