95 resultados para Hilary Putnam
Resumo:
In this working paper we discuss current attempts to engage communities in planning policy formulation in the UK. In particular we focus on the preparation of Community Strategies (CS) in England to inform local public policy and the wider proposals recently published by the UK government to move towards enhanced community engagement in planning (DTLR, 2001). We discuss how such strategies could be operationalised with a conceptual framework developed following ideas derived from ANT (cf. Murdoch, 1997, 1998; Selman, 2000; Parker & Wragg, 1999; Callon, 1986, 1998) and the ‘capitals’ literature (Lin, 2002; Fine, 2001; Selman, 2000; Putnam, 1993). We see this as an expression of neo-pragmatic planning theory, (Hoch, 1996; Stein & Harper, 2000) to develop a form of ‘pre-plan mapping’.
Resumo:
This article discusses the ways in which languages can be integrated into histories of war and conflict, by exploring ongoing research in two case studies: the liberation and occupation of Western Europe (1944–47), and peacekeeping/peace building in Bosnia-Herzegovina (1995–2000). The article suggests that three methodological approaches have been of particular value in this research: adopting an historical framework; following the “translation” of languages into war situations; and contextualizing the figure of the interpreter/translator. The process of incorporating languages into histories of conflict, the article argues, has helped to uncover a broader languages landscape within the theatres of war.
Resumo:
Several studies using ocean–atmosphere general circulation models (GCMs) suggest that the atmospheric component plays a dominant role in the modelled El Niño-Southern Oscillation (ENSO). To help elucidate these findings, the two main atmosphere feedbacks relevant to ENSO, the Bjerknes positive feedback (μ) and the heat flux negative feedback (α), are here analysed in nine AMIP runs of the CMIP3 multimodel dataset. We find that these models generally have improved feedbacks compared to the coupled runs which were analysed in part I of this study. The Bjerknes feedback, μ, is increased in most AMIP runs compared to the coupled run counterparts, and exhibits both positive and negative biases with respect to ERA40. As in the coupled runs, the shortwave and latent heat flux feedbacks are the two dominant components of α in the AMIP runs. We investigate the mechanisms behind these two important feedbacks, in particular focusing on the strong 1997–1998 El Niño. Biases in the shortwave flux feedback, α SW, are the main source of model uncertainty in α. Most models do not successfully represent the negative αSW in the East Pacific, primarily due to an overly strong low-cloud positive feedback in the far eastern Pacific. Biases in the cloud response to dynamical changes dominate the modelled α SW biases, though errors in the large-scale circulation response to sea surface temperature (SST) forcing also play a role. Analysis of the cloud radiative forcing in the East Pacific reveals model biases in low cloud amount and optical thickness which may affect α SW. We further show that the negative latent heat flux feedback, α LH, exhibits less diversity than α SW and is primarily driven by variations in the near-surface specific humidity difference. However, biases in both the near-surface wind speed and humidity response to SST forcing can explain the inter-model αLH differences.
Resumo:
The variations with the seasonal cycle of the atmospheric response to constant SST anomalies in the eastern tropical Pacific are investigated with the atmospheric GCM, HadAM3. The equatorial wind response is weakest in January and February when the warmest SSTs are south of the Equator and strongest in April when the warmest SSTs are on the Equator. This may have consequences for the seasonality of the onset and termination of El Niño. Westerly wind anomalies in the tropical Pacific associated with El Niño have previously been observed to shift south of the Equator, weakening on the Equator, during the northern winter. It has been suggested that this may contribute to the termination of El Niño in spring. These experiments demonstrate that such a shift can arise solely in response to the mean seasonal cycle during El Niño and does not require changes in SST anomalies.
Resumo:
Currently, most operational forecasting models use latitude-longitude grids, whose convergence of meridians towards the poles limits parallel scaling. Quasi-uniform grids might avoid this limitation. Thuburn et al, JCP, 2009 and Ringler et al, JCP, 2010 have developed a method for arbitrarily-structured, orthogonal C-grids (TRiSK), which has many of the desirable properties of the C-grid on latitude-longitude grids but which works on a variety of quasi-uniform grids. Here, five quasi-uniform, orthogonal grids of the sphere are investigated using TRiSK to solve the shallow-water equations. We demonstrate some of the advantages and disadvantages of the hexagonal and triangular icosahedra, a Voronoi-ised cubed sphere, a Voronoi-ised skipped latitude-longitude grid and a grid of kites in comparison to a full latitude-longitude grid. We will show that the hexagonal-icosahedron gives the most accurate results (for least computational cost). All of the grids suffer from spurious computational modes; this is especially true of the kite grid, despite it having exactly twice as many velocity degrees of freedom as height degrees of freedom. However, the computational modes are easiest to control on the hexagonal icosahedron since they consist of vorticity oscillations on the dual grid which can be controlled using a diffusive advection scheme for potential vorticity.
Resumo:
The relevance of regional policy for less favoured regions (LFRs) reveals itself when policy-makers must reconcile competitiveness with social cohesion through the adaptation of competition or innovation policies. The vast literature in this area generally builds on an overarching concept of ‘social capital’ as the necessary relational infrastructure for collective action diversification and policy integration, in a context much influenced by a dynamic of industrial change and a necessary balance between the creation and diffusion of ‘knowledge’ through learning. This relational infrastructure or ‘social capital’ is centred on people’s willingness to cooperate and ‘envision’ futures as a result of “social organization, such as networks, norms and trust that facilitate action and cooperation for mutual benefit” (Putnam, 1993: 35). Advocates of this interpretation of ‘social capital’ have adopted the ‘new growth’ thinking behind ‘systems of innovation’ and ‘competence building’, arguing that networks have the potential to make both public administration and markets more effective as well as ‘learning’ trajectories more inclusive of the development of society as a whole. This essay aims to better understand the role of ‘social capital’ in the production and reproduction of uneven regional development patterns, and to critically assess the limits of a ‘systems concept’ and an institution-centred approach to comparative studies of regional innovation. These aims are discussed in light of the following two assertions: i) learning behaviour, from an economic point of view, has its determinants, and ii) the positive economic outcomes of ‘social capital’ cannot be taken as a given. It is suggested that an agent-centred approach to comparative research best addresses the ‘learning’ determinants and the consequences of social networks on regional development patterns. A brief discussion of the current debate on innovation surveys has been provided to illustrate this point.
Resumo:
The arbitrarily structured C-grid, TRiSK (Thuburn, Ringler, Skamarock and Klemp, 2009, 2010) is being used in the ``Model for Prediction Across Scales'' (MPAS) and is being considered by the UK Met Office for their next dynamical core. However the hexagonal C-grid supports a branch of spurious Rossby modes which lead to erroneous grid-scale oscillations of potential vorticity (PV). It is shown how these modes can be harmlessly controlled by using upwind-biased interpolation schemes for PV. A number of existing advection schemes for PV are tested, including that used in MPAS, and none are found to give adequate results for all grids and all cases. Therefore a new scheme is proposed; continuous, linear-upwind stabilised transport (CLUST), a blend between centred and linear-upwind with the blend dependent on the flow direction with respect to the cell edge. A diagnostic of grid-scale oscillations is proposed which gives further discrimination between schemes than using potential enstrophy alone and indeed some schemes are found to destroy potential enstrophy while grid-scale oscillations grow. CLUST performs well on hexagonal-icosahedral grids and unrotated skipped latitude-longitude grids of the sphere for various shallow water test cases. Despite the computational modes, the hexagonal icosahedral grid performs well since these modes are easy and harmless to filter. As a result TRiSK appears to perform better than a spectral shallow water model.
Resumo:
Previous studies using coupled general circulation models (GCMs) suggest that the atmosphere model plays a dominant role in the modeled El Nin ̃ o–Southern Oscillation (ENSO), and that intermodel differences in the thermodynamical damping of sea surface temperatures (SSTs) are a dominant contributor to the ENSO amplitude diversity. This study presents a detailed analysis of the shortwave flux feedback (aSW) in 12 Coupled Model Intercomparison Project phase 3 (CMIP3) simulations, motivated by findings that aSW is the primary contributor to model thermodynamical damping errors. A ‘‘feedback decomposition method,’’ developed to elucidate the aSW biases, shows that all models un- derestimate the dynamical atmospheric response to SSTs in the eastern equatorial Pacific, leading to un- derestimated aSW values. Biases in the cloud response to dynamics and the shortwave interception by clouds also contribute to errors in aSW. Changes in the aSW feedback between the coupled and corresponding atmosphere-only simulations are related to changes in the mean dynamics. A large nonlinearity is found in the observed and modeled SW flux feedback, hidden when linearly cal- culating aSW. In the observations, two physical mechanisms are proposed to explain this nonlinearity: 1) a weaker subsidence response to cold SST anomalies than the ascent response to warm SST anomalies and 2) a nonlinear high-level cloud cover response to SST. The shortwave flux feedback nonlinearity tends to be underestimated by the models, linked to an underestimated nonlinearity in the dynamical response to SST. The process-based methodology presented in this study may help to correct model ENSO atmospheric biases, ultimately leading to an improved simulation of ENSO in GCMs.