37 resultados para Higher-Order Networks
Resumo:
Background: Self-based achievement goals use one’s own intrapersonal trajectory as a standard of evaluation, and this intrapersonal trajectory may be grounded in one’s past (past-based goals) or one’s future potential potential-based goals). Potential-based goals have been overlooked in the literature to date. Aims: The primary aim of the present research is to address this oversight within the context of the 3 x 2 achievement goal framework. Samples: The Study 1 sample was 381 U.S. undergraduates; the Study 2 sample was 310 U.S. undergraduates. Methods: In Study 1, we developed scales to assess otential-approach and potential-avoidance goals, and tested their factorial validity with exploratory and confirmatory factor analyses. In Study 2, we used confirmatory factor analysis to test both the separability of past-based and potential-based goals and their higher order integration within the self-based category. Results: Study 1 supported the factorial validity of the potential-approach and potential-avoidance goal scales. Study 2 supported the separability of past-based and potential-based goals, as well as their higher order integration within the self-based category. Conclusions: This research documents the utility of the proposed distinction, and paves the way for subsequent work on antecedent and consequences of potential-approach and potential-avoidance goals. It highlights the importance
Resumo:
We introduce semiconductor quantum dot-based fluorescence imaging with approximately 2-fold increased optical resolution in three dimensions as a method that allows both studying cellular structures and spatial organization of biomolecules in membranes and subcellular organelles. Target biomolecules are labelled with quantum dots via immunocytochemistry. The resolution enhancement is achieved by three-photon absorption of quantum dots and subsequent fluorescence emission from a higher-order excitonic state. Different from conventional multiphoton microscopy, this approach can be realized on any confocal microscope without the need for pulsed excitation light. We demonstrate quantum dot triexciton imaging (QDTI) of the microtubule network of U373 cells, 3D imaging of TNF receptor 2 on the plasma membrane of HeLa cells, and multicolor 3D imaging of mitochondrial cytochrome c oxidase and actin in COS-7 cells.
Resumo:
Retreating ice fronts (as a result of a warming climate) expose large expanses of deglaciated forefield, which become colonized by microbes and plants. There has been increasing interest in characterizing the biogeochemical development of these ecosystems using a chronosequence approach. Prior to the establishment of plants, microbes use autochthonously produced and allochthonously delivered nutrients for growth. The microbial community composition is largely made up of heterotrophic microbes (both bacteria and fungi), autotrophic microbes and nitrogen-fixing diazotrophs. Microbial activity is thought to be responsible for the initial build-up of labile nutrient pools, facilitating the growth of higher order plant life in developed soils. However, it is unclear to what extent these ecosystems rely on external sources of nutrients such as ancient carbon pools and periodic nitrogen deposition. Furthermore, the seasonal variation of chronosequence dynamics and the effect of winter are largely unexplored. Modelling this ecosystem will provide a quantitative evaluation of the key processes and could guide the focus of future research. Year-round datasets combined with novel metagenomic techniques will help answer some of the pressing questions in this relatively new but rapidly expanding field, which is of growing interest in the context of future large-scale ice retreat.
Resumo:
Brand competition is modelled using an agent based approach in order to examine the long run dynamics of market structure and brand characteristics. A repeated game is designed where myopic firms choose strategies based on beliefs about their rivals and consumers. Consumers are heterogeneous and can observe neighbour behaviour through social networks. Although firms do not observe them, the social networks have a significant impact on the emerging market structure. Presence of networks tends to polarize market share and leads to higher volatility in brands. Yet convergence in brand characteristics usually happens whenever the market reaches a steady state. Scale-free networks accentuate the polarization and volatility more than small world or random networks. Unilateral innovations are less frequent under social networks.
Resumo:
Differential geometry is used to investigate the structure of neural-network-based control systems. The key aspect is relative order—an invariant property of dynamic systems. Finite relative order allows the specification of a minimal architecture for a recurrent network. Any system with finite relative order has a left inverse. It is shown that a recurrent network with finite relative order has a local inverse that is also a recurrent network with the same weights. The results have implications for the use of recurrent networks in the inverse-model-based control of nonlinear systems.
Resumo:
This paper uses techniques from control theory in the analysis of trained recurrent neural networks. Differential geometry is used as a framework, which allows the concept of relative order to be applied to neural networks. Any system possessing finite relative order has a left-inverse. Any recurrent network with finite relative order also has an inverse, which is shown to be a recurrent network.
Resumo:
An incidence matrix analysis is used to model a three-dimensional network consisting of resistive and capacitive elements distributed across several interconnected layers. A systematic methodology for deriving a descriptor representation of the network with random allocation of the resistors and capacitors is proposed. Using a transformation of the descriptor representation into standard state-space form, amplitude and phase admittance responses of three-dimensional random RC networks are obtained. Such networks display an emergent behavior with a characteristic Jonscher-like response over a wide range of frequencies. A model approximation study of these networks is performed to infer the admittance response using integral and fractional order models. It was found that a fractional order model with only seven parameters can accurately describe the responses of networks composed of more than 70 nodes and 200 branches with 100 resistors and 100 capacitors. The proposed analysis can be used to model charge migration in amorphous materials, which may be associated to specific macroscopic or microscopic scale fractal geometrical structures in composites displaying a viscoelastic electromechanical response, as well as to model the collective responses of processes governed by random events described using statistical mechanics.