119 resultados para Hexarotor. Dynamic modeling. Robust backstepping control. EKF Attitude Estimation
Resumo:
Visual Telepresence system which utilize virtual reality style helmet mounted displays have a number of limitations. The geometry of the camera positions and of the display is fixed and is most suitable only for viewing elements of a scene at a particular distance. In such a system, the operator's ability to gaze around without use of head movement is severely limited. A trade off must be made between a poor viewing resolution or a narrow width of viewing field. To address these limitations a prototype system where the geometry of the displays and cameras is dynamically controlled by the eye movement of the operator has been developed. This paper explores the reasons why is necessary to actively adjust both the display system and the cameras and furthermore justifies the use of mechanical adjustment of the displays as an alternative to adjustment by electronic or image processing methods. The electronic and mechanical design is described including optical arrangements and control algorithms, An assessment of the performance of the system against a fixed camera/display system when operators are assigned basic tasks involving depth and distance/size perception. The sensitivity to variations in transient performance of the display and camera vergence is also assessed.
Resumo:
Robustness in multi-variable control system design requires that the solution to the design problem be insensitive to perturbations in the system data. In this paper we discuss measures of robustness for generalized state-space, or descriptor, systems and describe algorithmic techniques for optimizing robustness for various applications.
Resumo:
Climate models consistently predict a strengthened Brewer–Dobson circulation in response to greenhouse gas (GHG)-induced climate change. Although the predicted circulation changes are clearly the result of changes in stratospheric wave drag, the mechanism behind the wave-drag changes remains unclear. Here, simulations from a chemistry–climate model are analyzed to show that the changes in resolved wave drag are largely explainable in terms of a simple and robust dynamical mechanism, namely changes in the location of critical layers within the subtropical lower stratosphere, which are known from observations to control the spatial distribution of Rossby wave breaking. In particular, the strengthening of the upper flanks of the subtropical jets that is robustly expected from GHG-induced tropospheric warming pushes the critical layers (and the associated regions of wave drag) upward, allowing more wave activity to penetrate into the subtropical lower stratosphere. Because the subtropics represent the critical region for wave driving of the Brewer–Dobson circulation, the circulation is thereby strengthened. Transient planetary-scale waves and synoptic-scale waves generated by baroclinic instability are both found to play a crucial role in this process. Changes in stationary planetary wave drag are not so important because they largely occur away from subtropical latitudes.
Resumo:
This paper introduces and evaluates DryMOD, a dynamic water balance model of the key hydrological process in drylands that is based on free, public-domain datasets. The rainfall model of DryMOD makes optimal use of spatially disaggregated Tropical Rainfall Measuring Mission (TRMM) datasets to simulate hourly rainfall intensities at a spatial resolution of 1-km. Regional-scale applications of the model in seasonal catchments in Tunisia and Senegal characterize runoff and soil moisture distribution and dynamics in response to varying rainfall data inputs and soil properties. The results highlight the need for hourly-based rainfall simulation and for correcting TRMM 3B42 rainfall intensities for the fractional cover of rainfall (FCR). Without FCR correction and disaggregation to 1 km, TRMM 3B42 based rainfall intensities are too low to generate surface runoff and to induce substantial changes to soil moisture storage. The outcomes from the sensitivity analysis show that topsoil porosity is the most important soil property for simulation of runoff and soil moisture. Thus, we demonstrate the benefit of hydrological investigations at a scale, for which reliable information on soil profile characteristics exists and which is sufficiently fine to account for the heterogeneities of these. Where such information is available, application of DryMOD can assist in the spatial and temporal planning of water harvesting according to runoff-generating areas and the runoff ratio, as well as in the optimization of agricultural activities based on realistic representation of soil moisture conditions.
Resumo:
Awareness of emerging situations in a dynamic operational environment of a robotic assistive device is an essential capability of such a cognitive system, based on its effective and efficient assessment of the prevailing situation. This allows the system to interact with the environment in a sensible (semi)autonomous / pro-active manner without the need for frequent interventions from a supervisor. In this paper, we report a novel generic Situation Assessment Architecture for robotic systems directly assisting humans as developed in the CORBYS project. This paper presents the overall architecture for situation assessment and its application in proof-of-concept Demonstrators as developed and validated within the CORBYS project. These include a robotic human follower and a mobile gait rehabilitation robotic system. We present an overview of the structure and functionality of the Situation Assessment Architecture for robotic systems with results and observations as collected from initial validation on the two CORBYS Demonstrators.
Resumo:
A recent area for investigation into the development of adaptable robot control is the use of living neuronal networks to control a mobile robot. The so-called Animat paradigm comprises a neuronal network (the ‘brain’) connected to an external embodiment (in this case a mobile robot), facilitating potentially robust, adaptable robot control and increased understanding of neural processes. Sensory input from the robot is provided to the neuronal network via stimulation on a number of electrodes embedded in a specialist Petri dish (Multi Electrode Array (MEA)); accurate control of this stimulation is vital. We present software tools allowing precise, near real-time control of electrical stimulation on MEAs, with fast switching between electrodes and the application of custom stimulus waveforms. These Linux-based tools are compatible with the widely used MEABench data acquisition system. Benefits include rapid stimulus modulation in response to neuronal activity (closed loop) and batch processing of stimulation protocols.
Resumo:
Investigation of preferred structures of planetary wave dynamics is addressed using multivariate Gaussian mixture models. The number of components in the mixture is obtained using order statistics of the mixing proportions, hence avoiding previous difficulties related to sample sizes and independence issues. The method is first applied to a few low-order stochastic dynamical systems and data from a general circulation model. The method is next applied to winter daily 500-hPa heights from 1949 to 2003 over the Northern Hemisphere. A spatial clustering algorithm is first applied to the leading two principal components (PCs) and shows significant clustering. The clustering is particularly robust for the first half of the record and less for the second half. The mixture model is then used to identify the clusters. Two highly significant extratropical planetary-scale preferred structures are obtained within the first two to four EOF state space. The first pattern shows a Pacific-North American (PNA) pattern and a negative North Atlantic Oscillation (NAO), and the second pattern is nearly opposite to the first one. It is also observed that some subspaces show multivariate Gaussianity, compatible with linearity, whereas others show multivariate non-Gaussianity. The same analysis is also applied to two subperiods, before and after 1978, and shows a similar regime behavior, with a slight stronger support for the first subperiod. In addition a significant regime shift is also observed between the two periods as well as a change in the shape of the distribution. The patterns associated with the regime shifts reflect essentially a PNA pattern and an NAO pattern consistent with the observed global warming effect on climate and the observed shift in sea surface temperature around the mid-1970s.
Resumo:
Climate change science is increasingly concerned with methods for managing and integrating sources of uncertainty from emission storylines, climate model projections, and ecosystem model parameterizations. In tropical ecosystems, regional climate projections and modeled ecosystem responses vary greatly, leading to a significant source of uncertainty in global biogeochemical accounting and possible future climate feedbacks. Here, we combine an ensemble of IPCC-AR4 climate change projections for the Amazon Basin (eight general circulation models) with alternative ecosystem parameter sets for the dynamic global vegetation model, LPJmL. We evaluate LPJmL simulations of carbon stocks and fluxes against flux tower and aboveground biomass datasets for individual sites and the entire basin. Variability in LPJmL model sensitivity to future climate change is primarily related to light and water limitations through biochemical and water-balance-related parameters. Temperature-dependent parameters related to plant respiration and photosynthesis appear to be less important than vegetation dynamics (and their parameters) for determining the magnitude of ecosystem response to climate change. Variance partitioning approaches reveal that relationships between uncertainty from ecosystem dynamics and climate projections are dependent on geographic location and the targeted ecosystem process. Parameter uncertainty from the LPJmL model does not affect the trajectory of ecosystem response for a given climate change scenario and the primary source of uncertainty for Amazon 'dieback' results from the uncertainty among climate projections. Our approach for describing uncertainty is applicable for informing and prioritizing policy options related to mitigation and adaptation where long-term investments are required.
Resumo:
Negative correlations between task performance in dynamic control tasks and verbalizable knowledge, as assessed by a post-task questionnaire, have been interpreted as dissociations that indicate two antagonistic modes of learning, one being “explicit”, the other “implicit”. This paper views the control tasks as finite-state automata and offers an alternative interpretation of these negative correlations. It is argued that “good controllers” observe fewer different state transitions and, consequently, can answer fewer post-task questions about system transitions than can “bad controllers”. Two experiments demonstrate the validity of the argument by showing the predicted negative relationship between control performance and the number of explored state transitions, and the predicted positive relationship between the number of explored state transitions and questionnaire scores. However, the experiments also elucidate important boundary conditions for the critical effects. We discuss the implications of these findings, and of other problems arising from the process control paradigm, for conclusions about implicit versus explicit learning processes.
Resumo:
We analyze how the characteristics of El Niño-Southern Oscillation (ENSO) are changed in coupled ocean–atmosphere simulations of the mid-Holocene (MH) and the Last Glacial Maximum (LGM) performed as part of the Paleoclimate Modeling Intercomparison Project phase 2 (PMIP2). Comparison of the model results with present day observations show that most of the models reproduce the large scale features of the tropical Pacific like the SST gradient, the mean SST and the mean seasonal cycles. All models simulate the ENSO variability, although with different skill. Our analyses show that several relationships between El Niño amplitude and the mean state across the different control simulations are still valid for simulations of the MH and the LGM. Results for the MH show a consistent El Niño amplitude decrease. It can be related to the large scale atmospheric circulation changes. While the Northern Hemisphere receives more insolation during the summer time, the Asian summer monsoon system is strengthened which leads to the enhancement of the Walker circulation. Easterlies prevailing over the central eastern Pacific induce an equatorial upwelling that damps the El Niño development. Results are less conclusive for 21ka. Large scale dynamic competes with changes in local heat fluxes, so that model shows a wide range of responses, as it is the case in future climate projections.
Resumo:
Planning is a vital element of project management but it is still not recognized as a process variable. Its objective should be to outperform the initially defined processes, and foresee and overcome possible undesirable events. Detailed task-level master planning is unrealistic since one cannot accurately predict all the requirements and obstacles before work has even started. The process planning methodology (PPM) has thus been developed in order to overcome common problems of the overwhelming project complexity. The essential elements of the PPM are the process planning group (PPG), including a control team that dynamically links the production/site and management, and the planning algorithm embodied within two continuous-improvement loops. The methodology was tested on a factory project in Slovenia and in four successive projects of a similar nature. In addition to a number of improvement ideas and enhanced communication, the applied PPM resulted in 32% higher total productivity, 6% total savings and created a synergistic project environment.
Resumo:
Smooth flow of production in construction is hampered by disparity between individual trade teams' goals and the goals of stable production flow for the project as a whole. This is exacerbated by the difficulty of visualizing the flow of work in a construction project. While the addresses some of the issues in Building information modeling provides a powerful platform for visualizing work flow in control systems that also enable pull flow and deeper collaboration between teams on and off site. The requirements for implementation of a BIM-enabled pull flow construction management software system based on the Last Planner System™, called ‘KanBIM’, have been specified, and a set of functional mock-ups of the proposed system has been implemented and evaluated in a series of three focus group workshops. The requirements cover the areas of maintenance of work flow stability, enabling negotiation and commitment between teams, lean production planning with sophisticated pull flow control, and effective communication and visualization of flow. The evaluation results show that the system holds the potential to improve work flow and reduce waste by providing both process and product visualization at the work face.