54 resultados para Heteroploidy rice
Resumo:
This paper provides an account of the changing livelihood dynamics unfolding in diamond-rich territories of rural Liberia. In these areas, many farm families are using the rice harvested on their plots to attract and feed labourers recruited specifically to mine for diamonds. The monies accrued from the sales of all recovered stones are divided evenly between the family and hired hands, an arrangement which, for thousands of people, has proved to be an effective short-term buffer against poverty. A deepened knowledge of these dynamics could be an important step towards facilitating lasting development in Liberia’s highly-impoverished rural areas.
Resumo:
Season-long monitoring of on-farm rice (Oryza sativa, L.) plots in Nepal explored farmers' decision-making process on the deployment of varieties to agroecosystems, application of production inputs to varieties, agronomic practices and relationship between economic return and area planted per variety. Farmers deploy varieties [landraces (LRs) and modern varieties (MVs)] to agroecosystems based on their understanding of characteristics of varieties and agroecosystems, and the interaction between them. In marginal growing conditions, LRs can compete with MVs. Within an agroecosystem, economic return and area planted to varieties have positive relationship, but this is not so between agroecosystems. LRs are very diverse on agronomic and economic traits; therefore, they cannot be rejected a priori as inferior materials without proper evaluation. LRs have to be evaluated for useful traits and utilized in breeding programmes to generate farmer-preferred materials for marginal environments and for their conservation on-farm.
Resumo:
The paper highlights the methodological development of identifying and characterizing rice (Oryza sativa L.) ecosystems and the varietal deployment process through participatory approaches. Farmers have intricate knowledge of their rice ecosystems. Evidence from Begnas (mid-hill) and Kachorwa (plain) sites in Nepal suggests that farmers distinguish ecosystems for rice primarily on the basis of moisture and fertility of soils. Farmers also differentiate the number, relative size and specific characteristics of each ecosystem within a given geographic area. They allocate individual varieties to each ecosystem, based on the principle of ‘best fit’ between ecosystem characteristics and varietal traits, indicating that competition between varieties mainly occurs within the ecosystems. Land use and ecosystems determine rice genetic diversity, with marginal land having fewer options for varieties than more productive areas. Modern varieties are mostly confined to productive land, whereas landraces are adapted to marginal ecosystems. Researchers need to understand the ecosystems and varietal distribution within ecosystems better in order to plan and execute programmes on agrobiodiversity conservation on-farm, diversity deployment, repatriation of landraces and monitoring varietal diversity. Simple and practical ways to elicit information on rice ecosystems and associated varieties through farmers’ group discussion at village level are suggested.
Resumo:
Since the conclusion of its 14-year civil war in 2003, Liberia has struggled economically. Jobs are in short supply and operational infrastructural services, such as electricity and running water, are virtually nonexistent. The situation has proved especially challenging for the scores of people who fled the country in the 1990s to escape the violence and who have since returned to re-enter their lives. With few economic prospects on hand, many have elected to enter the artisanal diamond mining sector, which has earned notoriety for perpetuating the country's civil war. This article critically reflects on the fate of these Liberians, many of whom, because of a lack of government support, finances, manpower and technological resources, have forged deals with hired labourers to work artisanal diamond fields. Specifically, in exchange for meals containing locally grown rice and a Maggi (soup) cube, hired hands mine diamondiferous territories, splitting the revenues accrued from the sales of recovered stones amongst themselves and the individual ‘claimholder’ who hired them. Although this cycle—referred to here as ‘diamond mining, rice farming and a Maggi cube’—helps to buffer against poverty, few of the parties involved will ever progress beyond a subsistence level
Resumo:
Hybrid vigour may help overcome the negative effects of climate change in rice. A popular rice hybrid (IR75217H), a heat-tolerant check (N22), and a mega-variety (IR64) were tested for tolerance of seed-set and grain quality to high-temperature stress at anthesis at ambient and elevated [CO2]. Under an ambient air temperature of 29 °C (tissue temperature 28.3 °C), elevated [CO2] increased vegetative and reproductive growth, including seed yield in all three genotypes. Seed-set was reduced by high temperature in all three genotypes, with the hybrid and IR64 equally affected and twice as sensitive as the tolerant cultivar N22. No interaction occurred between temperature and [CO2] for seed-set. The hybrid had significantly more anthesed spikelets at all temperatures than IR64 and at 29 °C this resulted in a large yield advantage. At 35 °C (tissue temperature 32.9 °C) the hybrid had a higher seed yield than IR64 due to the higher spikelet number, but at 38 °C (tissue temperature 34–35 °C) there was no yield advantage. Grain gel consistency in the hybrid and IR64 was reduced by high temperatures only at elevated [CO2], while the percentage of broken grains increased from 10% at 29 °C to 35% at 38 °C in the hybrid. It is concluded that seed-set of hybrids is susceptible to short episodes of high temperature during anthesis, but that at intermediate tissue temperatures of 32.9 °C higher spikelet number (yield potential) of the hybrid can compensate to some extent. If the heat tolerance from N22 or other tolerant donors could be transferred into hybrids, yield could be maintained under the higher temperatures predicted with climate change.
Resumo:
CONTEXT. Rattus tanezumi is a serious crop pest within the island of Luzon, Philippines. In intensive flood-irrigated rice field ecosystems of Luzon, female R. tanezumi are known to primarily nest within the tillers of ripening rice fields and along the banks of irrigation canals. The nesting habits of R. tanezumi in complex rice–coconut cropping systems are unknown. AIMS. To identify the natal nest locations of R. tanezumi females in rice–coconut systems of the Sierra Madre Biodiversity Corridor (SMBC), Luzon, during the main breeding season to develop a management strategy that specifically targets their nesting habitat. METHODS. When rice was at the booting to ripening stage, cage-traps were placed in rice fields adjacent to coconut habitat. Thirty breeding adult R. tanezumi females were fitted with radio-collars and successfully tracked to their nest sites. KEY RESULTS. Most R. tanezumi nests (66.7%) were located in coconut groves, five nests (16.7%) were located in rice fields and five nests (16.7%) were located on the rice field edge. All nests were located above ground level and seven nests were located in coconut tree crowns. The median distance of nest sites to the nearest rice field was 22.5m. Most nest site locations had good cover of ground vegetation and understorey vegetation, but low canopy cover. Only one nest location had an understorey vegetation height of less than 20 cm. CONCLUSIONS. In the coastal lowland rice–coconut cropping systems of the SMBC, female R. tanezumi showed a preference for nesting in adjacent coconut groves. This is contrary to previous studies in intensive flood-irrigated rice ecosystems of Luzon, where the species nests mainly in the banks of irrigation canals. It is important to understand rodent breeding ecology in a specific ecosystem before implementing appropriate management strategies. IMPLICATIONS. In lowland rice–coconut cropping systems, coconut groves adjacent to rice fields should be targeted for the 20 management of R. tanezumi nest sites during the main breeding season as part of an integrated ecologically based approach to rodent pest management.
Resumo:
Farming freshwater prawns with fish in rice fields is widespread in coastal regions of southwest Bangladesh because of favourable resources and ecological conditions. This article provides an overview of an ecosystem-based approach to integrated prawn-fish-rice farming in southwest Bangladesh. The practice of prawn and fish farming in rice fields is a form of integrated aquaculture-agriculture, which provides a wide range of social, economic and environmental benefits. Integrated prawn-fish-rice farming plays an important role in the economy of Bangladesh, earning foreign exchange and increasing food production. However, this unique farming system in coastal Bangladesh is particularly vulnerable to climatechange. We suggest that community-based adaptation strategies must be developed to cope with the challenges. We propose that integrated prawn-fish-rice farming could be relocated from the coastal region to less vulnerable upland areas, but caution that this will require appropriate adaptation strategies and an enabling institutional environment.
Resumo:
This paper addresses the motivations behind farmers’ pesticide use in two regions of Bangladesh. The paper considers farmers’ knowledge of arthropods and their perceptions about pests and pest damage, and identifies why many farmers do not use recommended pest management practices. We propose that using the novel approach of classifying farmers according to their motivations and constraints rather than observed pesticide use can improve training approaches and increase farmers’ uptake and retention of more appropriate integrated pest management technologies.
Resumo:
This chapter explores some of the implications of adopting a research approach that focuses on people and their livelihoods in the rice-wheat system of the Indo-Gangetic Plains. We draw on information from a study undertaken by the authors in Bangladesh and then consider the transferability of our findings to other situations. We conclude that if our research is to bridge the researcher-farmer interface, ongoing technical research must be supported by research that explores how institutional, policy, and communication strategies determine livelihood outcomes. The challenge that now faces researchers is to move beyond their involvement in participatory research to understand how to facilitate a process in which they provide information and products for others to test. Building capacity at various levels for openness in sharing information and products–seeing research as a public good for all–seems to be a prerequisite for more effective dissemination of the available information and technologies.
Resumo:
Zinc (Zn)-deficient soils constrain rice (Oryza sativa) production and cause Zn malnutrition. The identification of Zn-deficiency-tolerant rice lines indicates that breeding might overcome these constraints. Here, we seek to identify processes underlying Zn-deficiency tolerance in rice at the physiological and transcriptional levels. A Zn-deficiency-tolerant line RIL46 acquires Zn more efficiently and produces more biomass than its nontolerant maternal line (IR74) at low Zn(ext) under field conditions. We tested if this was the result of increased expression of Zn(2+) transporters; increased root exudation of deoxymugineic acid (DMA) or low-molecular-weight organic acids (LMWOAs); and/or increased root production. Experiments were performed in field and controlled environment conditions. There was little genotypic variation in transcript abundance of Zn-responsive root Zn(2+)-transporters between the RIL46 and IR74. However, root exudation of DMA and LMWOA was greater in RIL46, coinciding with increased root expression of putative ligand-efflux genes. Adventitious root production was maintained in RIL46 at low Zn(ext), correlating with altered expression of root-specific auxin-responsive genes. Zinc-deficiency tolerance in RIL46 is most likely the result of maintenance of root growth, increased efflux of Zn ligands, and increased uptake of Zn-ligand complexes at low Zn(ext); these traits are potential breeding targets.
Resumo:
Cereal grains are the dominant source of cadmium in the human diet, with rice being to the fore. Here we explore the effect of geographic, genetic, and processing (milling) factors on rice grain cadmium and rice consumption rates that lead to dietary variance in cadmium intake. From a survey of 12 countries on four continents, cadmium levels in rice grain were the highest in Bangladesh and Sri Lanka, with both these countries also having high per capita rice intakes. For Bangladesh and Sri Lanka, there was high weekly intake of cadmium from rice, leading to intakes deemed unsafe by international and national regulators. While genetic variance, and to a lesser extent milling, provide strategies for reducing cadmium in rice, caution has to be used, as there is environmental regulation as well as genetic regulation of cadmium accumulation within rice grains. For countries that import rice, grain cadmium can be controlled by where that rice is sourced, but for countries with subsistence rice economies that have high levels of cadmium in rice grain, agronomic and breeding strategies are required to lower grain cadmium.
Resumo:
An extensive data set of total arsenic analysis for 901 polished (white) grain samples, originating from 10 countries from 4 continents, was compiled. The samples represented the baseline (i.e., not specifically collected from arsenic contaminated areas), and all were for market sale in major conurbations. Median total arsenic contents of rice varied 7-fold, with Egypt (0.04 mg/kg) and India (0.07 mg/kg) having the lowest arsenic content while the U.S. (0.25 mg/kg) and France (0.28 mg/kg) had the highest content. Global distribution of total arsenic in rice was modeled by weighting each country’s arsenic distribution by that country’s contribution to global production. A subset of 63 samples from Bangladesh, China, India, Italy, and the U.S. was analyzed for arsenic species. The relationship between inorganic arsenic content versus total arsenic content significantly differed among countries, with Bangladesh and India having the steepest slope in linear regression, and the U.S. having the shallowest slope. Using country-specific rice consumption data, daily intake of inorganic arsenic was estimated and the associated internal cancer risk was calculated using the U.S. Environmental Protection Agency (EPA) cancer slope. Median excess internal cancer risks posed by inorganic arsenic ranged 30-fold for the 5 countries examined, being 0.7 per 10,000 for Italians to 22 per 10,000 for Bangladeshis, when a 60 kg person was considered.
Resumo:
BACKGROUND: Reduction of vegetation height is recommended as a management strategy for controlling rodent pests of rice in South-east Asia, but there are limited field data to assess its effectiveness. The breeding biology of the main pest species of rodent in the Philippines, Rattus tanezumi, suggests that habitat manipulation in irrigated rice–coconut cropping systems may be an effective strategy to limit the quality and availability of their nesting habitat. The authors imposed a replicated manipulation of vegetation cover in adjacent coconut groves during a single rice-cropping season, and added artificial nest sites to facilitate capture and culling of young. RESULTS: Three trapping sessions in four rice fields (two treatments, two controls) adjacent to coconut groves led to the capture of 176 R. tanezumi, 12Rattus exulans and seven Chrotomysmindorensis individuals. There was no significant difference in overall abundance between crop stages or between treatments, and there was no treatment effect on damage to tillers or rice yield. Only two R. tanezumi were caught at the artificial nest sites. CONCLUSION: Habitat manipulation to reduce the quality of R. tanezumi nesting habitat adjacent to rice fields is not effective as a lone rodent management tool in rice–coconut cropping systems.
Resumo:
Background and Aims The trafficking of proteins in the endoplasmic reticulum (ER) of plant cells is a topic of considerable interest since this organelle serves as an entry point for proteins destined for other organelles, as well as for the ER itself. In the current work, transgenic rice was used to study the pattern and pathway of deposition of the wheat high molecular weight (HMW) glutenin sub-unit (GS) 1Dx5 within the rice endosperm using specific antibodies to determine whether it is deposited in the same or different protein bodies from the rice storage proteins, and whether it is located in the same or separate phases within these. Methods The protein distribution and the expression pattern of HMW sub-unit 1Dx5 in transgenic rice endosperm at different stages of development were determined using light and electron microscopy after labelling with antibodies. Key results The use of HMW-GS-specific antibodies showed that sub-unit 1Dx5 was expressed mainly in the sub-aleurone cells of the endosperm and that it was deposited in both types of protein body present in the rice endosperm: derived from the ER and containing prolamins, and derived from the vacuole and containing glutelins. In addition, new types of protein bodies were also formed within the endosperm cells. Conclusions The results suggest that the HMW 1Dx5 protein could be trafficked by either the ER or vacuolar pathway, possibly depending on the stage of development, and that its accumulation in the rice endosperm could compromise the structural integrity of protein bodies and their segregation into two distinct populations in the mature endosperm.